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ABSTRACT

HTTP Request Smuggling (HRS) is an attack that exploits the HTTP
processing discrepancies between two servers deployed in a proxy-
origin configuration, allowing attackers to smuggle hidden requests
through the proxy. While this idea is not new, HRS is soaring in
popularity due to recently revealed novel exploitation techniques
and real-life abuse scenarios.

In this work, we step back from the highly-specific exploits hog-
ging the spotlight, and present the first work that systematically
explores HRS within a scientific framework. We design an experi-
ment infrastructure powered by a novel grammar-based differential
fuzzer, test 10 popular server/proxy/CDN technologies in combi-
nations, identify pairs that result in processing discrepancies, and
discover exploits that lead to HRS. Our experiment reveals previ-
ously unknownways to manipulate HTTP requests for exploitation,
and for the first time documents the server pairs prone to HRS.
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1 INTRODUCTION

Due to the continuing proliferation of web caches, proxies, cloud ser-
vices, and Content DeliveryNetworks (CDNs) that deploymassively-
distributed networks made up of these technologies, a typical HTTP
request is often processed by multiple intermediate servers before
it reaches its destination. HTTP Request Smuggling (HRS) is an
attack that exploits the discrepancies between HTTP processing
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semantics of these different servers to confuse them about message
boundaries, and consequently smuggles unintended requests into
the connection inside the request body.

HRSwas first documented by Linhart et al. in 2005 [24]. However,
the technique took off only recently when researchers proposed
novel variants and demonstrated attacks on high-profile targets
(e.g., [6, 15, 19, 23]). Ultimately, smugglingwas shown to be a serious
threat leading to response queue and cache poisoning, which can
then be exploited for myriad nefarious purposes such as personal
data leakage, credential theft, session hijacking, denial of service,
and security control bypass attacks, resulting in thousands of dollars
in bug bounties (e.g., [5, 16, 17]).

While these same researchers also released tools (e.g., [7, 36])
that partially automate the detection of HRS, these are largely
intended for assisting website owners and penetration testers in
probing specific targets for vulnerabilities. These tools are also
narrowly scoped, primarily testing for exploits that involve the
manipulation of two particular HTTP headers, Content-Length
and Transfer-Encoding, which govern how servers determine
HTTP message bounds.

To date, HRS has not been studied in a systematic manner; the
disclosed vulnerabilities were instead driven by case studies target-
ing popular websites. In particular, previous work on HRS leaves
two important gaps in our understanding of HRS attacks.

First and foremost, HRS is a system interaction problem, in-
volving at least two HTTP processors on the traffic path. These
processors may not necessarily be individually buggy; but when
used together, they disagree on the parsing or semantics of a given
HTTP request, which leads to a vulnerability. This key aspect of
HRS has not been explored in previous work. Next, previous attacks
focus on malicious manipulation of the two aforementioned HTTP
headers. Whether the remaining HTTP headers, or the rest of an
HTTP request, could be tampered with to induce similar processing
discrepancies remains uncharted territory.

In this paper, we present the first study that investigates HRS in
a scientific framework, and we tackle the above research questions.
Namely, we present a novel experiment setup with 10 popular
web servers and proxies: Apache, NGINX, Tomcat, Apache Traffic
Server (ATS), HAProxy, Squid, Varnish, Akamai, Cloudflare, and
CloudFront. We study these technologies in pairs, investigating
which combinations are vulnerable to HRS. To that end, we propose
a grammar-based fuzzer called T-Reqs that incorporates string
and tree mutations targeting a large variety of HTTP headers, the
request line, and the request body. T-Reqs employs a differential
fuzzing strategy, first testing each target technology in isolation,

1



and then comparing responses to identify the pairs that behave
differently, signaling a potential vulnerability.

Once we identify the combinations that exhibit discrepancies
and the payloads that trigger them, we deploy every server pair
in a proxy-to-origin formation for further experimentation and
verification of our findings. We examine the conditions which cause
the potential HRS attacks to succeed or fail in this setup, and finally
demonstrate a range of exploits we discover.

Our results show that attacks can indeed be induced by manipu-
lating every part of a request, and highlights that HRS is a complex
system interaction problem that can crop up as a result of seem-
ingly innocuous processing discrepancies between pairs of web
technologies that are otherwise shown to be secure in isolation.

We summarize our contributions as follows:
• We present the most comprehensive study of HRS to date,
and examine attacks within a scientific framework for the
first time in literature.

• We propose a novel approach and experiment setup that
identify the HTTP processing discrepancies between 10 pop-
ular web servers and proxy services often used together.

• We develop a grammar-based differential HTTP fuzzer called
T-Reqs, and make it open source.

• We discover novel HRS payloads made possible by manipu-
lating HTTP request parts beyond the Content-Length and
Transfer-Encoding headers.

• We systematically examine the practical conditions that de-
termine the success of HRS.

Availability. T-Reqs is open-source and publicly available on
the authors’ websites.

Ethical Considerations. This study was conducted within a
controlled experiment setup, and no attacks were launched against
any external entities. We followed the established coordinated-
disclosure best practices; we notified all tested technology vendors
of our findings, provided them with a copy of this paper, and made
our data and team available for further assistance.

2 BACKGROUND & RELATEDWORK

In this section we explain the basic terminology we use in the rest
of this text, and summarize how HRS attacks work.

2.1 HTTP Requests & Chunked Encoding

Listing 1 illustrates the structure of a typical HTTP request, made
up of the following three components.

(1) Request Line. Line 1 is the request line for this request,
which specifies theHTTPmethod (POST), the requested URI (/search),
and the protocol version (HTTP/1.1).

(2) Header Block. This section follows the request line, listing
header fields and values that define various parameters of the com-
munication. On lines 2-3, the Host header specifies the endpoint
the request should be dispatched to, and Content-Length indicates
the length of the message body.

(3) Request Body. Separated from the header block by a blank
line containing a carriage return and a line feed (often indicated by
CRLF or \r\n), the request body starts on line 5 and contains the
message payload. Here, the body consists of a parameter and its
value, query=funny+cats.

Table 1: Breakdown of the chunked body.

6\r\n Chunk size
query=\r\n Chunk data
a;foo=bar\r\n Chunk size & chunk extension
funny+cats\r\n Chunk data
0\r\n Last chunk
X-Header:value\r\n Trailer part
\r\n Terminating CRLF

Chunked transfer encoding is an alternative encoding scheme
available in HTTP/1.1, where the message body is split into multiple
chunks transferred independently. This mechanism is useful for
streaming applications, when the size of the data to be transferred
is not known a priori [10].

Listing 2 shows the same request as before, this time using chun-
ked encoding. Every data chunk is preceded by its size, specified
in hexadecimal. Both the size and the data are terminated by CRLF.
Optionally, a chunk extension may immediately follow the size and
contain metadata (e.g., a hash of the chunk data). The last chunk is
a regular but empty chunk with a size of zero. Again, optionally, the
last chunk can include a trailer which is treated similar to message
headers, used for sending additional information to the receiver.
Table 1 presents a breakdown of these chunk components.

Note that the Transfer-Encoding: chunked header in Listing 2
indicates to the receiver that chunked encoding is in effect. When
using chunked encoding, sending the Content-Length header is
notmeaningful, and in fact, according to RFC 7230, this is prohibited:
“A sender MUST NOT send a Content-Length header field in any
message that contains a Transfer-Encoding header field.” [10]

2.2 HTTP Request Smuggling (HRS)

HRS stems from a discrepancy between the HTTP processing be-
haviors of two servers that process the same request on the traffic
path. These servers could be any technology that intercepts, parses,
interprets, or forwards the request, including CDNs, stand-alone
proxies, web caches, load balancers, or security products. In this
text, we call the first server receiving the request the entrypoint,
and the next one the exitpoint. While this abstraction is sufficient
for our discussion, note that a typical request may be processed by
more than two such entities, and a hazardous combination of any
two could lead to attacks.

HRS involves a maliciously-crafted request such that the entry
and exitpoints disagree on the bounds of the message. All docu-
mented attacks we previously discussed in Section 1 achieve this
by including both the Content-Length and Transfer-Encoding:

1 POST /search HTTP/1.1
2 Host: example.com
3 Content-Length: 16
4

5 query=funny+cats
6

7

8

9

10 .

Listing 1: Regular body.

1 POST /search HTTP/1.1
2 Host: example.com
3 Transfer-Encoding: chunked
4

5 6
6 query=
7 a;foo=bar
8 funny+cats
9 0
10 X-Header:value

Listing 2: Chunked body.
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1 POST /search HTTP/1.1
2 Host: example.com
3 Content-Length: 33
4 Transfer-Encoding: ;chunked
5

6 0
7 `
8 GET /img/i.jpg HTTP/1.1
9 X:X

Listing 3: Malicious smuggler request.

1 GET /js/j.js HTTP/1.1
2 Host: example.com
3 A
4 A
5 A

Listing 4: Incoming request.

1 GET /img/i.jpg HTTP/1.1
2 X:XGET /js/j.js HTTP/1.1
3 Host: example.com
4

5 .

Listing 5: Smuggled request.

chunked headers in the request – if the entrypoint honors one
header and the exitpoint the other, they parse the message body
differently, and an HRS attack is possible. Even when both servers
are strictly RFC compliant so that they reject or normalize messages
containing both headers, and attacker can still abuse header parsing
discrepancies (e.g., by introducing invisible characters or minor
syntax errors into headers) and prevent one of the servers from
recognizing an invalid header combination.

Let’s illustrate the attack through an example.
(1) The attacker crafts a smuggler request which includes a sec-

ond hidden request inside the message body. Listing 3 shows such a
request including Content-Length: 33 and Transfer-Encoding:
;chunked together. Note the extra semicolon in the latter, which
will serve to confuse the message parser in the next step.

(2) The entrypoint receives the request, but cannot correctly
parse Transfer-Encoding: ;chunked due to the semicolon. The
server disregards chunked encoding and instead parses the message
body according to the Content-Length: 33 header. As a result,
the entrypoint forwards all 33 bytes shown between lines 5-9 to
the next hop.

(3) The exitpoint receives the same request, correctly parses
Transfer-Encoding: ;chunked thanks to its lenient parser ig-
noring errors, and processes the body in chunks. Consequently,
the exitpoint treats lines 6-7 as the terminating empty chunk, and
ignores lines 8-9.

(4) The unprocessed data shown on lines 8-9 remain in the re-
quest buffer of the exitpoint. When eventually another request
arrives through the same connection (Listing 4), it is appended to
this unprocessed data, making up a brand new request (Listing 5).
This new request is only seen and processed by the exitpoint; the
attacker has successfully smuggled it through the entrypoint.

In this example, assuming that the entrypoint is a web cache
and the exitpoint a web application server, the attacker uses HRS
to launch a cache poisoning-based denial-of-service attack. Specifi-
cally, the web cache expects a JavaScript file in response (see List-
ing 4), but instead receives an image from the application (see List-
ing 5) and erroneously caches that, likely breaking the application

<start> ::= <request>
<request> ::= <line><headers><newline><body>
<line> ::= "POST /search HTTP/1.1\r\n" | "PUT / HTTP/1.1\r\n"
<headers> ::= <host><content-length> | <host>
<host> ::= "Host: example.com\r\n"
<content-length> ::= "Content-Length: 16\r\n"
<newline> ::= "\r\n"
<body> ::= "query=funny+cats" | "query=carrots"

Listing 6: Example CFG for a simple HTTP request.

until the cache expires. This is but one example, and researchers
have shown that HRS can be utilized for general classes of attacks
such as cache poisoning, cache deception, session hijacking, circum-
vention of security controls, and response queue poisoning, as well
as abusing application specific design flaws [6, 15, 19, 23, 24, 35].

2.3 Differential Fuzzing

Fuzzing is a well-established software testing approach with many
applications in systems security [14, 38]. Of particular interest for
our purposes is differential fuzzing, based on the idea of differen-
tial testing [27], where the focus is to identify differing behavior
between applications when given the same input. To name recent
examples, this method was used to detect side-channel attacks [32],
to expose vulnerabilities in parsers and applications [33], and to
find RFC violations in TLS libraries [37].

To apply this technique to the HTTP protocol, we construct our
fuzzer using a custom context-free grammar (CFG). Context-free
grammars are sets of rules that allow for a formal definition of a
structure, e.g., an HTTP request, and values that correspond to
that structure. From this grammar, we are able to generate valid
inputs to our system, and make our fuzzing mutations based off of
them. An example CFG that produces an HTTP request is shown in
Listing 6. Grammar-based fuzzers have also been previously used
for software bug hunting (e.g., [1]).

A CFG has four components: a start symbol, non-terminal sym-
bols, terminal symbols, and production rules. The start symbol is
where the expansion of a CFG starts from. In Listing 6, the start
symbol is denoted by <start>. Symbols surrounded by <> are non-
terminals, meaning they are expanded before the input is fully
generated. For example, <request> is expanded to a sequence of
other non-terminal symbols, whereas, <line> can be expanded
into multiple terminal strings. Finally, production rules define how
symbols are expanded. Each line in Listing 6 is a production rule.
When this CFG is fully expanded, one of the possible results is the
request shown in Listing 1.

2.4 Other Related Work

An emerging line of research is the application of HRS to higher
HTTP protocol versions; in particular, Emil Lerner and James Kettle
independently presented attacks on HTTP/2 [18, 22]. These utilize
the same techniques as before, but exploit flaws in the protocol
downgrade mechanisms when an entrypoint converts HTTP/2 to
HTTP/1.1 before forwarding requests to the exitpoint. Our work
does not explore this area.

Beyond the presentations, proof-of-concept exploits, and white
papers we discussed so far, there is no academic literature on HRS as
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Figure 1: Inputs are generated from a grammar, mutated, and sent

to the tested server. The feedback server collects feedback from the

requests forwarded by the tested server and stores it for analysis.

of this writing. However, while this paper is the first work exploring
HRS within a scientific framework, there exists studies that propose
other ways to abuse HTTP processing discrepancies.

Omer Gil presented a novel cache poisoning attack called Web
Cache Deception (WCD), which exploits an object cacheability dis-
agreement between a web server and a cache, resulting in data
leaks in public caches [12, 13]. Mirheidari et al. generalized WCD
as a path confusion problem caused by a discrepancy in the in-
terpretation of a requested URL [28], and conducted a large-scale
measurement to identify vulnerable sites in the wild [29].

Nguyen et al. presented a different take on cache poisoning,
crafting HTTP requests that are considered valid by a web cache
while triggering an error at the origin server [31]. As a result,
the error response is erroneously cached, resulting in a denial-of-
service attack. Similarly, Chen et al. exploited HTTP servers that
respond differently to ambiguities in the Host header values, which
once again leads to cache poisoning [4].

3 RESEARCH QUESTIONS & METHOD

Previous work on HRS presents valuable concepts behind the at-
tack, but does not explore the issue in depth or breadth, instead
demonstrating impact through specific case studies. Our work is
motivated by this knowledge gap. Below, we detail our guiding
research questions, and explain our methods to answer them.
(Q1) Can we systematically test for HRS at scale?
(Q2) What parts of a request can induce processing discrepancies?
(Q3) What escalates a processing discrepancy to HRS?
(Q4) What technology stacks are at risk?
(Q1) Can we systematically test for HRS at scale? Previous

work relies on a combination of manual testing and basic tools
designed to target specific controlled environments (e.g., [7, 36]) for
attack discovery. In contrast, we aim to design a fully-automated,
generalizable, and extendable methodology that can explore HRS
at scale and discover previously unknown venues for exploitation.

To address (Q1), we design a multi-stage experiment powered by
a novel CFG-based differential fuzzer, T-Reqs. This is an automated
process, eliminating the manual labor and narrow scope hindering
previous work. This methodology and infrastructure to explore
HRS systematically equips us to answer the remaining research
questions. Below, we briefly describe the 3 stages of our experiment.

Stage 1. We first point T-Reqs to a set of popular HTTP servers
for testing, and send identical requests to each. We record the

processing behavior of each individual server, and combine the
results to identify servers that process the same request differently.

At this stage, we experiment with each server in isolation to
analyze their individual behavior. Each server runs in a reverse-
proxy mode, where they receive requests and forward them on
to our feedback server. The feedback server gleans information
about the processing behavior of the tested server by analyzing
the forwarded request. This information is stored in a database for
later analysis. We specifically look for mismatches between parsed
message body lengths, and label those as discrepancies.

Figure 1 depicts this whole process, where the top row is internal
to T-Reqs, and the bottom row is the rest of the experiment infras-
tructure. Note that, in order to avoid adding a confounding layer of
parsing in our own tools, we use low-level network programming.

Stage 2. We then reduce our set of discrepancies found in Stage
1 based on rules and heuristics detailed in Section 5. Essentially,
we associate mutation sets with the server pairs they cause a dis-
crepancy for, minimize them down to a representative group, and
finally, manually classify these groups based on their mutation pat-
terns. We stress that this manual classification is not mandatory;
we merely include this step to simplify the presentation for our
readers by attaching intuitive labels to similar discrepancy types.

Stage 3. Finally, we verify the exploitability of the results from
Stage 2. To achieve this, we layer and deploy suspected vulnerable
HTTP server pairs behind each other. We use a testing method
inspired by prior work to check whether a given mutated request
can really be used for HRS. We present the details of this method
in Section 5.3.

(Q2) What parts of a request can induce processing dis-

crepancies? Previous work has explored the parsing discrepan-
cies involving Content-Length and Transfer-Encoding headers.
Whether the remaining request components can be abused to simi-
lar effect remains an open question.

We address (Q2) by considerably expanding that scope. Not only
do we allow T-Reqs to mutate additional headers, but we also inves-
tigate whether abusing the request line and the message body can
also induce discrepancies, opening up novel attack vectors. We run
three separate experiments, one for each HTTP request component
listed above, each following the same stages we designed for ad-
dressing (Q1). In each experiment, we only allow T-Reqs to mutate
the part under focus, while keeping the other two request com-
ponents unmutated. This makes it feasible to pinpoint and reason
about the exploitable discrepancies in isolation.

(Q3) What escalates a processing discrepancy to HRS? The
presence of a discrepancy is a red flag, but not all discrepancies
necessarily lead to HRS. In particular, while exploits involving
Content-Length and Transfer-Encoding headers are intuitive
(i.e., they directly affect the body parsing behavior, which is a pre-
requisite for HRS), why the discrepancies in other request compo-
nents may lead to an attack is not obvious.

To explore (Q3), while we verify our findings in Stage 3 of the
experiment, we analyze the conditions affecting exploitability. We
document the novel and successful exploit mechanisms we identify,
and also the failures that hinder attacks in practice.

(Q4) What technology stacks are at risk? HRS is a system
interaction problem involving two HTTP processors, which may
not be flawed when operating in isolation; but stacked together they
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lead to a vulnerability. Previous work on HRS has made no attempt
to measure what server combinations are prone to smuggling.

While we cannot feasibly test all technology combinations in
existence, we make the first systematic attempt to answer (Q4)
by designing an experiment that measures and documents the
hazardous interactions between 10 HTTP processors.

Specifically, we pick popular web server, proxy, and CDN tech-
nologies in use today that make up a large portion of the Internet:
Apache, NGINX, Tomcat, Apache Traffic Server (ATS), HAProxy,
Squid, Varnish, Akamai, Cloudflare, and CloudFront. For specific
versions, please see Appendix A. To test CDN vendors, we subscribe
to their free or trial tier services. We configure each technology to
run as a reverse-proxy fronting our feedback server (except Tomcat,
which has no reverse-proxy mode, so we run a Java servlet on it that
echoes back the received requests). We use default configurations,
save for turning off buffering in NGINX to speed up testing, and
disabling caching for clean experiment runs.

4 T-REQS SYSTEM DESIGN

We now detail the design of T-Reqs, our grammar-based differential
HTTP fuzzer. T-Reqs is capable of generating HTTP requests as
inputs from a grammar, manipulating them with string and tree
mutations, and sending them to multiple HTTP servers in parallel
for testing.

4.1 Input Generation

To ensure that we test all relevant components of an HTTP request,
and their applicable values, T-Reqs uses a context-free grammar
(CFG) to generate inputs. Each generated input is a valid HTTP
request constructed by following one of the paths provided by the
CFG, chosen randomly to ensure uniform testing. We record each
random seed as the input ID to aid in reproducibility.

When building our input from the included grammar, we adopt
a tree structure. The start symbol becomes the root, and each non-
terminal is a non-terminated node in the tree. The leaves of the
tree, once fully expanded, are made up of the terminal symbols (i.e.,
string literals), and when combined form our HTTP request. We
present the specific CFGs used for our experiments in Section 5.

4.2 Mutating Inputs

In order to exercise the parsers of, and consequently trigger process-
ing discrepancies between, different HTTP servers, T-Reqs makes
mutations on the valid requests generated in the previous step.

Symbols, each corresponding to anHTTP element, can bemarked
in one of two ways: string mutable or tree mutable. If a symbol
is not marked, it is assumed to be immutable. While string mu-
tations (e.g., character insertion, deletion) make small changes to
parts of an input, tree mutations lead to structural changes (e.g., re-
peated method specification, missing protocol version). This allows
T-Reqs to test both trivial and major changes to an input. Mutation
operations are formally defined in Appendix B.

In each iteration, T-Reqs randomly applies up to 2 mutations on
each input. This upper bound makes the impact analysis of specific
mutations feasible, as well as helping us avoid changing requests
to the degree that they are unrecognizable by the servers.

1 PORT //search HTTP/1.1
2 Host: example.com
3 Content-Length: 13
4

5 query=bananas

Listing 7: String mutations.

1 HTTP /search /search HTTP/1.1
2 Host: example.com
3 Content-Length: 13
4

5 query=bananas

Listing 8: Tree mutations.

4.3 String Mutations

If a symbol is string mutable, then a random character can be
deleted, replaced, or inserted at a random position inside that sym-
bol. To add or replace characters, an external character pool can be
defined. T-Reqs uses the ASCII character set (codes 0-127) as the
character pool suitable for HTTP requests.

Listing 7 shows an example. The last character in the protocol
version (1) is deleted, a letter in the method name (S) is replaced
with R, and a forward slash is inserted at the start of the URI.

4.4 Tree mutations

If a symbol is tree mutable, then a random symbol can be deleted,
replaced, or inserted at a random position. To add or replace sym-
bols, an external pool of elements can be defined. T-Reqs uses the
list of all symbols marked mutable as the external symbol pool.

For example, the request line is represented by <request-line>
and has several sub-elements including <method>, <URI>, <proto>,
and <version>. In Listing 8, it is assumed that <request-line>
is tree mutable, and the following tree mutations are applied: 1)
<method> is replaced by <proto>, 2) an extra <URI> is inserted after
the current URI, and 3) the existing <proto> is deleted.

5 EXPERIMENT DETAILS AND RESULTS

In this section, we provide details and discuss results from the
experiments listed in Section 3. We first run three separate experi-
ments on each part of the HTTP request utilizing T-Reqs to expose
discrepancies in message body parsing behavior. Next, we reduce,
minimize, and categorize the sets of mutations that cause these dis-
crepancies to understand what leads servers to disagree on message
boundaries. We then verify the HRS potential of these categories,
and explore reasons why they succeed or fail.

5.1 Stage 1 - Finding Discrepancies

For this stage, we run three separate experiments on each part of the
HTTP request: the request line, request headers, and request body.
Table 2 shows the duration of each experiment, and the number
of requests generated and tested. We found that mutations in the
request line experiment causedmore errors (e.g., 400 Bad Request),
even when bounding the total number of mutations to two. We see
more mutations an hour in the request line experiment because
these errors are significantly faster for HTTP servers to handle
than valid requests.

To make T-Reqs more efficient, we supply different grammars
and mutable symbols for each experiment as detailed below.

5.1.1 Request Line Experiment Details. Listing 9 shows the gram-
mar for the request line experiment. We test the standard HTTP
methods as defined by their RFCs [9, 11]. Note that we do not
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Table 2: General information about experiments.

Name Duration # Inputs

Request line 70 hours 8,857K
Request headers 94 hours 3,096K
Request body 72 hours 2,051K

Table 3: Mutability of request line symbols.

String Mutable Tree Mutable

<method-name> <space> <protocol>
<separator> <version> <newline> <request-line>

Table 4: Mutability of request body symbols.

String Mutable Tree Mutable

<zero> <trailer-part>
<chunk-data><newline>

<chunk-size> <chunk-extension>

<chunked-body>
<chunk> <last-chunk>

Table 5: Experiment success values.

Experiment Name # Inputs # Successful

Request line 8,857K 5K
Request headers 3,096K 1K
Request body 2,051K 595K

test the HTTP/2 or HTTP/3 protocols, but our generated requests
merely appear to use them. As we show, the protocol values still
trigger unexpected parsing behaviors nonetheless.

Table 3 details what symbols of the grammar are marked as string
or tree mutable. In order to test mutations solely on the request
line, we mark only those symbols as mutable.

5.1.2 Request Headers Experiment Details. Listing 10 details the
grammar for the request headers experiment. We used all standard
HTTP request headers as detailed in the "Message Headers" reg-
istry of IANA [20], and valid values from their corresponding RFC
documents. For a full listing of all 67 headers and values used in
this experiment, refer to Section C in Appendix.

Mutable symbols for this experiment consist of the 67 headers
and their sub-elements depicted in the full grammar definition.
String literals in the grammar are marked as string mutable, while
all other symbols are marked as tree mutable.

5.1.3 Request Body Experiment Details. Listing 11 depicts the gram-
mar for the request body experiment. This experiment focuses on
chunked bodies, as they have a complex structure with the highest
potential for parsing discrepancies. We include all chunked body
components in the input grammar, namely, the chunk size, chunk ex-
tension, chunk data, trailer and last chunk.We also add the Trailer
header to the grammar, since it is required to include additional
fields at the end of chunked messages. Unlike other experiments,
we fix the method to POST and the version to 1.1.

The grammar defines a symbol called <padding> which adds
200 D characters after the last chunk. This symbol lets us deter-
mine whether the experiment server used Transfer-Encoding
or Content-Length when parsing the body. If the server uses
Content-Length, the output will include our padding values; oth-
erwise, the padding will be omitted from the output, since this is
the expected behavior for chunked bodies.

<start> ::= <request>
<request> ::= <request-line><base><the-rest>
<request-line> ::= <method-name><space><uri><space>

<protocol><separator><version><newline>↩→
<method-name> ::= "GET" | "HEAD" | "POST" | "PUT" | "DELETE" |

"CONNECT" | "OPTIONS" | "TRACE" | "PATCH"↩→
<space> ::= " "
<uri> ::= "/_URI_"
<protocol> ::= "HTTP"
<separator> ::= "/"
<version> ::= "0.9" | "1.0" | "1.1" | "2.0" | "3.0"
<newline> ::= "\r\n"
<base> ::= "Host: _HOST_\r\nConnection:close\r\nX-Request-ID:

_REQUEST_ID_\r\n"↩→
<the-rest> ::= "Content-Length: 5\r\n\r\nBBBBB"

Listing 9: CFG for request line experiment.

<start> ::= <request>
<request> ::= <method-name><request-uri><http-version><base>

<entity-size-header><some-header><some-header><body>↩→
<request-uri> ::= " /_URI_ "
<http-version> ::= "HTTP/0.9" | "HTTP/1.0" | "HTTP/1.1"
<method-name> ::= "GET" | "HEAD" | "POST" | "PUT" | "DELETE" |

"CONNECT" | "OPTIONS" | "TRACE"↩→
<base> ::= "\r\nHost: _HOST_\r\nConnection:close\r\nX-Request-ID:

_REQUEST_ID_\r\n"↩→
<entity-size-header> ::= <content-length> |

<chunked-transfer-encoding> |
<content-length><chunked-transfer-encoding> |
<chunked-transfer-encoding><content-length>

↩→
↩→
↩→
<some-header> ::= <accept> | <accept-charset> | (truncated) |

<user-agent> | <via>↩→
<body> ::= "\r\nA\r\nBBBBBBBBBB\r\n0\r\n\r\nBBBBB(truncated)"

(truncated)

Listing 10: CFG for request headers experiment.

<start> ::= <request>
<request> ::=

<base><entity-size-headers><trailer><chunked-body><padding>↩→
<base> ::= "POST /_URI_ HTTP/1.1\r\nHost:

_HOST_\r\nConnection:close\r\nX-Request-ID: _REQUEST_ID_\r\n"↩→
<entity-size-headers> ::= <content-length><transfer-encoding> |

<transfer-encoding>↩→
<content-length> ::= "Content-Length: 200\r\n"

<transfer-encoding> ::= "Transfer-Encoding: chunked\r\n"↩→
<trailer> ::= "Trailer: Content-Length\r\n\r\n" | "Trailer:

Transfer-Encoding\r\n\r\n" | "Trailer: Foo\r\n\r\n" | "\r\n"↩→
<chunked-body> ::= <chunk><last-chunk><newline> |

<chunk><last-chunk><trailer-part><newline>↩→
<chunk> ::=

<chunk-size><chunk-extension><newline><chunk-data><newline> |
<chunk-size><newline><chunk-data><newline>

↩→
↩→
<chunk-size> ::= "4"
<chunk-extension> ::= ";foo=bar"
<chunk-data> ::= "BBBB"

<last-chunk> ::= <zero><chunk-extension><newline> |
<zero><newline>
<zero> ::= "0"

↩→
↩→
↩→
<trailer-part> ::= "Transfer-Encoding: chunked\r\n" |

"Transfer-Encoding: identity\r\n" | "Content-Length: 180\r\n" |
"Bar: Foo\r\n"

↩→
↩→
<newline> ::= "\r\n"
<padding> ::= "DDDDDDDDDD(truncated)"

Listing 11: CFG for the request body experiment.

Table 4 shows that three chunked body symbols are marked as
tree mutable, while the other symbols are string mutable. The rest
of the request remains immutable.
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Figure 2: Request line mutation categories affecting server pairs.

5.2 Stage 2 - Discrepancy Reduction and

Classification

We now detail the process for determining mutation success, and
present our classifications of mutation sets that cause discrepancies.

Successful Mutation Sets. To determine if a mutation from the
previous stage has HRS potential, we first need to define what a
successful mutation is.

A successful mutation set causes a discrepancy in the body pars-
ing behavior in at least one server pair, where the absence of the
mutation set does not. Essentially, if a mutation set causes a dis-
crepancy that the base unmutated request does not, we consider
that a successful mutation set.

Table 5 shows the number of successful mutations for each ex-
periment. To gain deeper insights into the causes and potential for
HRS, we set out to reduce this set further. We reduce mutation sets
based on the following definition.

A mutation set𝑀2 is reducible to𝑀1 iff.𝑀1 ⊆ 𝑀2 and 𝑠 (𝑀2) ⊆
𝑠 (𝑀1) where 𝑠 (𝑀) is the set of server pairs which disagree about
parsing on an input mutated by a mutation set𝑀 .

Classification of Mutation Sets. We classify mutation sets
based on their mutation pattern beyond the specifics of how the
mutations are carried out. For example, all mutations deleting, re-
placing, or inserting a character in the method of a request line
follow the same pattern: Distorting Method. We explore these cate-
gories and the server pairs they affect for each experiment below.

5.2.1 Request Line Experiment. Figure 2 lists all mutation cate-
gories affecting the request line, and the server pairs that disagree
on body parsing for each category. Table 6 shows examples for each
mutation category and the impacted server pairs.

Mangled Method. This class comprises mutation sets which
modify the method name. Mutations can change the case of a letter,
replace the entire method name, or modify it in another way. The
first row in a Table 6 shows an example where a single mutation
causes a discrepancy between 4 different server pairs. We observe
that the entrypoint (Apache or HAProxy) parses and forwards the

Table 6: Examples for each request line mutation category.

Category Request Line Entrypoint-Exitpoint

mangled
method hEAD / HTTP/1.1\r\n

Apache-Akamai
Apache-ATS

HAProxy-Akamai
HAProxy-ATS

distorted
protocol GET / HhTTP/1.1\r\n ATS-Squid

invalid
version GET / HTTP/1.19\r\n

ATS-Akamai
ATS-Squid

manipulated
termination

CONNECT / HTTP/1.0
\r\n\r\n

Varnish-NGINX
HAProxy-NGINX

embedded
request lines

OPTIONS / HTTP/OPTIONS
/ HTTP/0.9\r\n1.1\r\n

Akamai-Squid

multiple
mutations GET / HTTP//1.1\r\n HAProxy-Squid

various
method
version

combinations

TRACE / HTTP/1.0\r\n

Apache-ATS
HAProxy-ATS
Squid-ATS
Varnish-ATS

body of the request, while the exitpoint (Akamai or ATS) ignores it.
The remaining servers return an error because of the mutation. For
brevity, in the remainder of this section an error should be assumed
if an experiment server is not mentioned explicitly.

Distorted Protocol. This category consists of mutation sets that
replace one character in the protocol name with another, usually
adding the character h to the beginning of the protocol, or changing
the case of an existing letter. Table 6 shows a mutation that causes
a discrepancy between ATS and Squid. ATS handles the mutation
and parses the message body whereas Squid ignores the body.

Invalid Version.Mutation sets with this classification add a digit,
replace a digit with another, or remove a digit from the beginning
and adds one to the end. This category of mutations primarily
involve digits, keeping the versions numeric, yet invalid.

Manipulated Termination. These mutations primarily add a
space, tab, or CRLF before the CRLF that terminates the request
line. The example in Table 6 triggers a discrepancy when Varnish
or HAProxy is the entrypoint, and NGINX is the exitpoint. The
entrypoint determines that the body is what directly follows from
the double CRLF, whereas the exitpoint ignores the body completely.

Embedded Request Lines. This category includes mutation sets
that insert a whole request line into the existing request line at
various positions, including after the method and the protocol. The
example in Table 6 has a request line inserted after the protocol.

Multiple Mutations.We classify mutation sets into this cate-
gory when the individual mutations alone do not trigger a discrep-
ancy, but together they do. These mutation sets mainly have two
forms: 1) the method name is mutated while another CRLF is added
next to the terminating CRLF, or 2) a character is deleted from the
protocol name and a second slash is added after the protocol name.

Various Method Version Combinations. Sometimes inconsis-
tent behavior is triggered by bringing various methods and versions
together with no need for mutations. In the example in Table 6,
ATS ignores the message body for TRACE requests, whereas Apache,
HAProxy, Squid, and Varnish do not.

5.2.2 Request Headers Experiment. Figure 3 lists all server pairs
and mutation categories affecting request headers. Table 7 presents
examples as before; however, each example shows both the method
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Figure 3: Request header mutation categories affecting server pairs.

name and the mutation, since successful mutations in this experi-
ment vary from method to method.

Distorted Header Value. This category includes mutation sets
that add specific characters, such as a vertical tab, new page, space,
plus, and comma to the beginning and end of specific header values.
The headers in this category are Transfer-Encoding: chunked
and Content-Length: LENGTH. In Table 7, a comma is appended to
the header value. Akamai ignores the request body, while Tomcat,
HAProxy and ATS parse and forward it.

Manipulated Termination. Mutations in this category mainly
insert a space or tab after the header-terminating CRLF, resulting
in parsing discrepancies. In Table 7, a space is added after the CRLF
following the first header value. As a result, ATS ignores the request
body, whereas NGINX, Cloudflare and CloudFront do not.

Expect Header. We find that the Expect header is interpreted
differently by Apache. When Apache receives a request with this
header and its 100-continue value, it ignores the body in the
request as opposed to every other server we experimented with.

Identity Encoding. When a request has a Transfer-Encoding
header with the identity value, Squid and ATS ignore the mes-
sage body. Tomcat, Akamai, Cloudflare and CloudFront parse and
forward the body.

V1.0 Chunked Encoding. Tomcat does not support chunked
encoding in HTTP version 1.0. Thus, this causes an inconsistency
between Tomcat and all other servers we experimented with. When
a request has both Transfer-Encoding and Content-Length head-
ers, all servers prefer the former, whereas Tomcat prefers the latter.

Double Transfer-Encoding.We observe an interesting behavior
when a request has two Transfer-Encoding headers. When the first
header has the value identity and the second chunked, Cloudflare
and CloudFront use the Content-Length header, while Tomcat,
HAProxy, and Akamai use Transfer-Encoding to dictate message
body parsing.

Table 7: Examples for each request header mutation category.

Category Method ; Request Header Entrypoint-Exitpoint

distorted
header value

GET;Transfer-Encoding:
chunked,\r\n

Tomcat-Akamai
ATS-Akamai

HAProxy-Akamai

manipulated
termination

GET;Transfer-Encoding:
chunked\r\n␣{Header}:{Value}\r\n

NGINX-ATS
Cloudflare-ATS
CloudFront-ATS

expect
header

POST;Expect:
100-continue\r\n

NGINX-Apache
(truncated)

identity
encoding

POST;Transfer-Encoding:
identity\r\n

Cloudflare-Squid
CloudFront-Squid

(truncated)
v1.0 chunked
encoding

POST;Transfer-Encoding:
chunked\r\n

Apache-Tomcat
(truncated)

double
transfer-
encoding

POST;Transfer-Encoding:
identity\r\n

Transfer-Encoding:
chunked\r\n

Cloudflare-Tomcat
CloudFront-Tomcat
Cloudflare-Akamai

(truncated)
various
method
version

combinations

OPTIONS-0.9;
Content-Length:5\r\n

HAProxy-Squid
Akamai-Squid

Various Method Version Combinations. Similar to the request
line experiment, various options for methods and versions defined
in the input grammar are combined in different ways to generate
our input requests. In this experiment, these combinations are also
combinedwith various headers including Transfer-Encoding, and
can cause discrepancies without a mutation.

5.2.3 Request Body Experiment. Figure 4 lists the server pairs that
have discrepancies with mutation categories affecting the request
body, and Table 8 shows examples.

Chunk-Size Chunk-Data Mismatch. These mutations add
to or remove a character from chunk data to make its size differ-
ent from what is claimed in the chunk size. This causes Akamai
to process the request body using Content-Length and ignore
Transfer-Encoding, while every other server (except Tomcat and
Apache that give an error) continues to use Transfer-Encoding.

Manipulated Chunk-Size Termination.Mutations in this cate-
gory modify the CRLF terminating the chunk size, and typically add
a character such as a new page, semicolon, or space. This causes Aka-
mai to make a different preference between Transfer-Encoding
and Content-Length headers compared to the other servers.

Manipulated Chunk-Extension Termination. In this cate-
gory, mutation sets remove a part of the newline which termi-
nates the chunk extension. Usually, the carriage return character
is deleted. Again, this causes Akamai to use the Content-Length
header instead of the Transfer-Encoding header.

Manipulated Chunk-Data Termination. These mutations
remove the terminating CRLF, partially or wholly from the chunk
data part of the request. In the example shown in Table 8, the CRLF
is completely removed at the end of the first chunk data.

Mangled Last-Chunk.Mutations in this category include re-
moving one CRLF before the last chunk, inserting digits next to the
chunk size in the last chunk (as seen in Table 8), or removing the
entire last chunk itself. Unlike HAProxy, Squid, and CloudFront,
Akamai does not treat the request body as chunked-encoded.
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Figure 4: Request body mutation categories affecting server pairs.

5.3 Stage 3+ - Determining Discrepancy HRS

Potential

Stage 2 yielded classified mutation sets that are reduced to represen-
tative examples, and the server pairs that have parsing discrepancies
on said sets. We now determine if these parsing discrepancies can
be used for HRS. For every unique server pair that appears in the re-
sults from Stage 2, we set up our lab to position them as entrypoint
and exitpoint on path. We ensure that the connection between the
two servers is persistent, as HRS requires this.

To understand if our mutated requests lend themselves to HRS,
we craft a smuggler request as shown in Listing 12 for every muta-
tion (Listing 12 shows a Mangled Method mutation). Immediately
after we send the smuggler request, we send a benign request like
Listing 13 on the same connection. If our smuggler request was
successful, our payload (shown in Listing 14) will invalidate the
valid request, and the exitpoint will return a 400 Bad Request
error message in a response to the benign request.

To ensure the error message did not come from the entrypoint,
we note that each server has their own unique fingerprint in the
HTML error page returned, and verify the exitpoint’s fingerprint.

For each experiment, we now detail the categories of mutations
that can be used for HRS, and discuss why they succeeded while

1 hEAD / HTTP/1.1
2 Host: example.com
3 Content-Length: 2
4

5 A␣

Listing 12: Smuggler request.

1 POST / HTTP/1.1
2 Host: example.com
3 Content-Length:5
4

5 AAAAA

Listing 13: Benign request.

1 A␣POST / HTTP/1.1
2 Host: example.com
3 Content-Length:5
4

5 AAAAA

Listing 14: Poisoned request.

Table 8: Examples for each request body mutation category.

Category Request Body Entrypoint-Exitpoint

chunk-size
chunk-data
mismatch

4\r\nBBBB
\r\n0\r\n\r\n

Akamai-NGINX
Akamai-Varnish

(truncated)
manipulated
chunk-size
termination

4\t\nBBBB
\r\n0\r\n\r\n

Cloudflare-Akamai
Squid-Akamai
(truncated)

manipulated
chunk-extension

termination

4;foo=bar\r\nBBBB
\r\n0\r\n\r\n

Akamai-Cloudflare
Akamai-ATS
(truncated)

manipulated
chunk-data
termination

4\r\nBBBB\r\n4
\r\nBBBB

\r\n0\r\n\r\n

CloudFront-Varnish
Akamai-Varnish

(truncated)

mangled
last-chunk

4\r\nBBBB
\r\n20\r\n\r\n

HAProxy-Akamai
Squid-Akamai
(truncated)

the others failed. We note that for all but two specific cases, the pay-
load format allowed with these HRS attack vectors is unrestricted.
For the following, please reference Figure 5 for the server combi-
nations and mutation categories that successfully carried an HRS
payload, and Figure 6 for a breakdown of the server combinations
and reasons mutations failed for them.

5.3.1 Request Line Mutations. Among the request line mutations,
only two categories failed to carry out HRS, Distorted Protocol,
and Multiple Mutations. We found that some servers normalized
parts of the request line before forwarding them to the next server
when they encountered our mutations, or just flat out closed the
connection. We observed servers being particularly sensitive to
invalid requests, which is very common in these two mutation
categories. The successful categories contained less invalidating
mutations, and thus proved more fruitful.

In one case, there was a restriction on the format of the smug-
gled content. Using a specific method version combination with
Squid-Akamai, the entrypoint expected the request to be in chun-
ked encoding. Therefore, the smuggled content had to follow the
chunked format.

Unlike others, Varnish cleans its connection, preventing HRS.
When Varnish receives a GET request with a body, even though it
ignores the body, it does not leave the body in the connection.

5.3.2 Header Mutations. We observe that the categories Manip-
ulated Termination, Expect Header, Identity Encoding, and Double
Transfer-Encoding failed to work in any server combination. Similar
to the request linemutations, mutations to the Transfer-Encoding
and Content-Length headers often were not preserved. Servers
typically re-wrote their own headers in place of our mutations
based off of what they parsed, effectively stopping all HRS. For the
Expect Header failure, that category only affected Apache, and
Apache closes the connection after receiving these requests.

Similar to the request line experiment, only one case restricted
the format of the smuggled content.When a request with a distorted
header value was sent to ATS-Akamai, ATS required the smuggled
content to be in chunked encoding.

5.3.3 Body Mutations. For failed HRS attempts using body mu-
tations, the entrypoint re-wrote the mutated chunked body and
therefore did not preserve the mutation. In all cases where Akamai
was an entrypoint, HRS attempts succeeded except for Akamai-ATS.
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(a) Pairs affected by line mutations. (b) Pairs affected by header mutations. (c) Pairs affected by body mutations.

Figure 5: Server pairs affected by request smuggling.

ATS ignored the message body part that follows the last chunk as
expected, yet it did not leave that part in the connection.

5.3.4 Reasoning about Discrepancies. Server developers typically
base their design decisions on official documents like HTTP RFCs.
Unfortunately, RFCs cannot accommodate information about how
to interpret every single iteration of a valid HTTP request. When
confronted with gray areas, developers have to make implementa-
tion decisions that conform to the RFC, but are not explicit. HRS
arises from this gray area. We illustrate this by providing exam-
ples from each part of the HTTP request in our experiments that
successfully lead to HRS.

Request Line Mutations. In Listing 15, the version in the re-
quest line is mutated. Despite this mutation, ATS still forwarded
the message body to an exitpoint. In fact, we observed that ATS
forwarded the message body for all GET requests with any decimal
version number (i.e., 99.99). Conversely, this mutation caused Squid
to ignore the message body, presumably because it could not decide
what the version is. Squid’s body parsing behavior is dependent on
the version, as it ignores request bodies in version 0.9, yet accepts
them in newer versions.

HeaderMutations. Listing 16 shows a request which uses chun-
ked encoding with HTTP version 1.0, even though the chunked
encoding was introduced to the protocol with version 1.1. Despite
this fact, HAProxy supports chunked encoding in HTTP version

1 GET / HTTP/.11
2 Host: example.com
3 Content-Length: 5
4

5 AAAAA

Listing 15: Line mutation.

1 POST / HTTP/1.0
2 Host: example.com
3 Transfer-Encoding: chunked
4

5 4\r\nBBBB\r\n0\r\n\r\n

Listing 16: Header and version.

1 POST / HTTP/1.1
2 Host: example.com
3 Content-Length: 5
4 Transfer-Encoding: chunked
5

6 4;foo=bar\r\nBBBB\r\n0\r\n\r\n

Listing 17: Body mutation.

1.0. Tomcat ignores this header, presumably because it assumes that
requests with version 1.0 cannot use chunked encoding. As a result,
the body of the request shown in Listing 16 is ignored by Tomcat,
while it is parsed by HAProxy.

Body Mutations. Listing 17 terminates the chunk extension
with an LF rather than a CRLF. NGINX treats the LF the same as
a CRLF and parses the message body as chunked. However, Aka-
mai handles this error by defaulting to Content-Length instead of
Transfer-Encoding to parse the message body.

6 IMPACT ASSESSMENT

So far we have answered our core research questions and systemat-
ically confirmed that HTTP processing discrepancies lead to novel
HRS vulnerabilities. Next, we present a set of empirical experiments
to reaffirm that these vulnerabilities in fact have practical impact,
and compare our work to existing HRS testing tools.

6.1 Demonstrating Possible Attacks

The damage caused by an HRS attack depends on the web applica-
tion and data exposed by the vulnerable server pair. In this paper,
we do not quantify such damage. Instead, we explore the discrepan-
cies between HTTP processors and quantify the HRS attack surface
independent of the outcome of any particular exploitation scenario.

Regardless, to demonstrate end-to-end attacks in a proof-of-
concept, we set up an environment with a vulnerable application
behind a server pair with actionable discrepancies. Specifically,
we abused a chunked body parsing discrepancy between Akamai-
NGINX. We configured NGINX to serve OWASP Mutillidae [8], a
deliberately vulnerable web application for security training.

We tested three scenarios using HRS: 1) bypassing header rewrit-
ing, 2) hijacking requests, and 3) delivering attack payloads. In (1),
we smuggled a request with an arbitrary X-Forwarded-For value,
evading re-writing by the entrypoint. This is critical, since this
header is often used in authentication and authorization schemes [26].
In (2) our smuggler request payload constructed a poisoned request
to an attacker-controlled destination, leaking a random user’s re-
quest content including session cookies. Finally, in (3) we smuggled
a request which exploits a reflected XSS vulnerability at the desti-
nation to have the XSS response delivered to a random user. Videos
of these attacks in action are available on the authors’ websites.
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(a) Pairs affected by line mutations. (b) Pairs affected by header mutations. (c) Pairs affected by body mutations.

Figure 6: Failed request smuggling reasons for each server pair.

6.2 Estimating Server Combinations

At a first glance, some of the server pairs we test may seem unreal-
istic for a real-life deployment scenario. However, the Internet has
become a complex ecosystem (and patchwork) of middle-boxes and
cloud services, where any given request may be processed by not
two, but many servers. CDN deployments are prevalent [2], and
multi-CDN chaining is practical [21]. These services themselves
may depend on popular proxies, web caches, and web servers (e.g.,
Fastly uses Varnish [25], Cloudflare uses NGINX [30]).

To illustrate our point, we conducted an experiment with the top
10K sites of the Tranco list [34], exploring what server technolo-
gies are deployed in the wild. Namely, we visited the homepage of
each site and collected the HTTP response headers. We simultane-
ously ran route traces for IP addresses seen on path, and performed
WHOIS lookups for each. We then searched through this data for
known header & value combinations that fingerprint the technolo-
gies, and for explicit service identifiers inside HTTP responses,
WHOIS data, and email domains. This process resulted in a set of
potential server technologies used for each site.

This methodology has limitations. There is no known way to re-
liably detect proxy services via traffic analysis, particularly because
many services allow operators to strip the identifying headers to
prevent fingerprinting. Furthermore, different endpoints on a site

Apache

NGINX

Tomcat

ATS

HAProxy

Squid

Varnish

Akamai

Cloudflare

CloudFront

Figure 7: HTTP processors paired in the wild. This is an unordered

graph, showing pairwise combinations. Red edges indicate pairs that

exhibit processing discrepancies, blue edges represent pairs that do

not. Edge thickness corresponds to the incidence of pairs.

may use distinct proxy technologies, requiring a comprehensive
crawl of each site for an accurate analysis. Finally, a blackbox de-
tection methodology cannot determine the placement order of the
servers, but only the fact that they are used in some combination.
These are non-trivial challenges that we do not tackle in this work.

Figure 7 summarizes our results, showing pairwise server com-
binations we observed, where the edge weights represent the inci-
dence. We find that approximately 17% of the sites among the top
10K use technologies that we have identified discrepancies between.
We observe an average of 2.8 technologies, with a median of 3, and
a maximum of 5 per site.

Given the aforementioned limitations, these results represent
a loose lower bound on the incidence of server pairings. Yet, they
show two important points. First, out of the 45 possible combina-
tions of the 10 servers in our setup, 36 are used in the wild. Second,
seemingly unrealistic combinations are viable, and chained CDNs
are more frequent than other combinations. We conclude that mak-
ing presumptions about what server combinations are viable in
the wild is counterproductive when exploring HRS and similar
systems-level hazards. Processing discrepancies can crop up on any
technology, and therefore, all combinations are worth investigating.

6.3 Comparing T-Reqs to Existing Tools

James Kettle’s Burp Suite extension HTTP Request Smuggler [36]
and Evan Custodio’s Python script smuggler [7] are the state-of-
the-art tools used when testing sites for HRS.

Foremost, both of these operate on fundamentally different tar-
gets and serve a different purpose than T-Reqs. In particular, these
tools are designed for penetration testing of a given target site,
treating the entire web deployment as a blackbox, and testing it for
a set of known Content-Length and Transfer-Encoding header
manipulation attacks presented in the authors’ respective works.

In contrast,T-Reqs is not designed to test live sites against known
exploits. T-Reqs tests pairwise combinations of HTTP processors in
a lab environment, and exercises each component individually, in
a greybox manner. It is designed to discover novel HRS vectors, as
opposed to testing a real-life deployment for known attacks.

Therefore, these tools are not substitutes for each other. T-Reqs
serves to discover novel HRS payloads that the others are bound to
miss given their limited scope. That does not diminish the value
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of previous work. In fact, these tools are suited to work in tandem,
where T-Reqs finds novel exploits, which can then be added to Burp
or smuggler to automate their use in penetration testing.

With that in mind, we next describe how these existing tools
work, and present an empirical study demonstratingT-Reqs’s ability
to create new knowledge for HRS research.

HRS Detection in Existing Tools. Existing tools use the detec-
tion methodology proposed by Kettle [15]. First, the request in List-
ing 18 is sent to a target to determine if it is affected by a CL.TE dis-
crepancy, meaning the entrypoint processes the Content-Length
header while the exitpoint prefers Transfer-Encoding. If the tar-
get is vulnerable, the entrypoint will forward the first four bytes
(i.e., chunk size 1 and chunk data Z), and the exitpoint will timeout
waiting for the next chunk which will never arrive. This timeout
delay flags the site as vulnerable.

If the CL.TE test fails, the request in Listing 19 is sent to check
for a TE.CL discrepancy. If there is a vulnerability, a similar delay
can be observed: The entrypoint forwards the body without the
byte X that comes after the last chunk, and the exitpoint receives
less content than what Content-Length indicates, therefore timing
out while waiting for one additional byte.

As also emphasized by Kettle, the order of the above two checks
is important. The TE.CL test should only be performed after con-
firming the absence of a CL.TE discrepancy. Otherwise the TE.CL
request could poison the connection with the byte X in CL.TE-
impacted targets, launching an attack on arbitrary Internet users.

All in all, both tools iterate through numerous mutations in the
Transfer-Encoding header of the requests in Listings 18 and 19,
and check the target for CL.TE and TE.CL discrepancies using the
above methodology.

Safety of the DetectionMethodology.Unfortunately, we have
empirically confirmed in our tests that neither tool is currently safe
to run on real-world targets.

Firstly, Custodio’s smuggler does not follow the above order of
requests which is critical for preventing inadvertent attacks. More
interestingly, even though Burp follows the protocol, we have deter-
mined that a false assumption made in the detection methodology
makes it hazardous for running real-world experiments. Namely,
the methodology assumes that, when the target is affected by a
TE.CL discrepancy, the entrypoint will treat the byte Q in Listing 18
as an invalid chunk size and return an error. That will prevent ac-
cidentally poisoning the connection during the CL.TE check. This
assumption does not hold; Akamai servers do not return an error
and forward the request as if Q was a proper chunk size.

1 POST / HTTP/1.1
2 Host: example.com
3 Transfer-Encoding: chunked
4 Content-Length: 4
5

6 1
7 Z
8 Q

Listing 18: CL.TE test request.

1 POST / HTTP/1.1
2 Host: example.com
3 Transfer-Encoding: chunked
4 Content-Length: 6
5

6 0
7

8 X

Listing 19: TE.CL test request.

While this could be an oversight in design, it is also possible that
Akamai’s behavior has changed in the two years since the publica-
tion of Kettle’s work. We conclude that testing the existing tools in
a large-scale experiment is not safe without explicit penetration-
testing agreements. Instead, we conducted our comparative study
in the same test environment used for the experiments with T-Reqs.

Empirical Comparison.We have already presented T-Reqs’s
output in Section 5. To compare those results with the detections
from the two existing tools, we ran them in the same experimental
setup. However, there were two cases we could not test. It is not
possible to run Tomcat in a reverse-proxy mode, and therefore we
did not test pairs having Tomcat as the entrypoint. Additionally,
we were unable to set up a Cloudflare-CloudFront pair, because the
Host header rewriting capability necessary for that deployment is
only available for Cloudflare’s Enterprise plan customers [3]. This
limitationwas not a factor during our core experiments withT-Reqs;
we had found no discrepancies for this CDN pair, and therefore we
did not need to attempt a deployment for exploitability testing.

Unsurprisingly, T-Reqs was the only tool that found the request
line and request body related attacks described in Sections 5.2.1
and 5.2.3. The others missed this category of attacks entirely, be-
cause they are only designed to test for the Content-Length and
Transfer-Encoding header manipulation attacks. One exception
was that Burp found an exploitable Mangled Last-Chunk discrep-
ancy onAkamai-ATS.Wemanually verified that this was an acciden-
tal true positive, as the request template Burp uses unintentionally
had the trigger for this discrepancy built into the chunked body –
no mutations were necessary for this finding. T-Reqs also detected
the same vulnerability through body mutations.

An unanticipated outcomewas neither smuggler nor Burp flagged
any request header attacks either, even though they are designed
to test for those. We reviewed the source code for both tools and
verified that the header modifications they use1,2 indeed do not lead
to any exploitable HRS vulnerabilities today on the 10 technologies
in our setup. We attribute this to the fact that these tools repeat
known exploits, and the server vendors have already had two years
to implement mitigations since their disclosure.

In summary, Burp detected one HRS vulnerability and smuggler
detected none, whereas T-Reqs yielded all the findings we presented
in Section 5. We conclude that T-Reqs indeed fulfills its role of
finding novel HRS vectors left out of scope in previous work.

6.4 Testing HRS in the Wild

Due to the aforementioned safety issues, the state-of-the-art HRS
detection methodology should not be used outside of specific tar-
gets that explicitly allow external testing of their sites. Designing a
safe detection scheme likely requires whitebox analysis of different
HTTP processors to ensure that request queues are not inadver-
tently poisoned. Conducting a large-scale HRS measurement in the
wild safely is a promising future research direction.

Here, we instead present a preliminary experiment testing real-
world deployments that has Akamai as entrypoint, and only with
a specific HRS payload. This is not an arbitrary choice. Prior to

1https://github.com/PortSwigger/http-request-smuggler/blob/master/src/burp/
DesyncBox.java
2https://github.com/defparam/smuggler/blob/master/configs/exhaustive.py
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running the experiment, we carefully studied Akamai’s behavior
and crafted an HRS detection payload, based on Kettle’s approach,
that is guaranteed to be safe for this particular experiment.

Specifically, we used a body mutation in the Chunk-Size Chunk-
Data Mismatch category. Recall from Section 5.2.3 and Figure 4 that
this category impacts server pairs that has Akamai as entrypoint,
and always makes Akamai prefer the Content-Length header. That
enables us to test sites for this novel HRS vulnerability while ac-
tively avoiding the unsafe situation, where anAkamai server prefers
the Transfer-Encoding but allows an invalid chunk size through.

To make sure that Akamai is the entrypoint in the target, we
sent a TRACE request with the Max-Forwards:0 header to force
the request to stop at the first HTTP server on path even if it does
not support the TRACEmethod. Out of 861 Akamai customers from
Tranco Top 10K identified previously in Section 6.2, we were able
to confirm 367 had Akamai as the entrypoint.

We tested these 367 domains by sending our new HRS detection
request, and flagged sites as vulnerable if they did not respond
within 5 seconds (i.e., the default threshold used in existing tools).
Out of the 367 domains tested, we found 23 to be vulnerable. These
included a high-profile financial institution, online retailers, and
other technology, news, and entertainment sites.

This experiment is decidedly narrow in scope. However, it suc-
cessfully demonstrates that real-world deployments are exposed to
HRS vulnerabilities we discovered with T-Reqs, despite the many
hidden layers of complexity present in the wild that we could not
account for in a lab environment. Designing a generalizable detec-
tion methodology and enabling a full-fledged measurement study
is the logical next step for characterizing the impact of HRS.

7 DISCUSSION

As we conclude, we underscore considerations for the correct in-
terpretation of our results.

Limitations.While this paper represents the most holistic in-
vestigation into HRS to date, it is by no means exhaustive. For
example, we leave non-standard HTTP headers out of scope. There
are further restrictions we impose on our methodology to make
the experimentation and analysis feasible, such as limiting the max-
imum number of mutations for an input, and mutating request
components in isolation in their respective experiment runs.

Nonetheless, our approach provides sufficient evidence to ad-
dress our research questions, showing that there are indeed vast
and unexplored opportunities for crafting HRS attacks – and that
the security community must stay alert. We make T-Reqs available
in the hopes that our fellow researchers will improve on it and
make even more exciting discoveries.

Real-World Considerations. In our experiments we test all
servers in their default configurations. While all of the exploits we
find are real and practical, configurations will vary considerably
in the wild. What is more, servers that we flag as impacted in this
experiment may be deployed behind other proxies (e.g., a web appli-
cation firewall or load balancer between the entry and exitpoints),
which intentionally or inadvertently strip out exploit payloads. On
the flip side, non-default configurations may also expose dangerous
discrepancies that we were not able to catch in our study.

We stress that our findings should not be taken at face value.
This work is not intended to be a prescribed list of vulnerabilities
and their mitigations. We provide strong indicators for hazardous
server combinations and demonstrate the severity of the issue, so
that system owners can vet their environments.

Blame Nobody.We reiterate that HRS is a system interaction
problem. Individual components of the system are not necessarily
flawed, but their hazardous combination results in a vulnerability
that is not trivial to detect or mitigate. This implies that technology
vendors are not always in a position to correct these flaws on their
own; an ideal HTTP processor that is strictly RFC compliant, using
a formally-verified parser, and implemented by the best developers
on the planet may still get caught in an HRS attack when combined
with a different technology that interprets a request differently.
Unfortunately, the reality is even more complicated, where RFCs
are ambiguous, bugs are inevitable, and powerful mechanisms to
rewrite HTTP requests are desirable and necessary features. In this
complex ecosystem, predicting, detecting, mitigating, or fixing HRS
is a non-trivial, open research problem.

While the results we present in this paper may appear to show
that some technologies and vendors are better than others, that
is an incorrect interpretation of our results. Our findings do not
represent a meaningful security comparison between the tested
servers, and they should not be taken out of context to pit one tech-
nology against another. Once again, this work presents a scientific,
systematic methodology to identify HRS, and uncover previously
unexplored venues for attacks, so that the developers and users of
these technologies are better equipped to understand the implica-
tions of the issue, and vet their own systems.

8 CONCLUSION

This paper is the first systematic exploration of HRS attacks. Re-
visiting our research questions from Section 3, we proposed an
experiment infrastructure and methodology for efficient discovery
of attacks (Q1), developed a novel grammar-based differential fuzzer
to test all components of an HTTP request for viable exploits (Q2),
provided insights into previously unknown success (and failure)
modes enabled by our exploits (Q3), and finally documented haz-
ardous combinations of popular servers (Q4). Our findings collec-
tively show that HRS may yet evolve into an even more complex
attack, and it is paramount that the security community tackle the
open research questions in the areas of detection and defense.
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A TESTED HTTP PROCESSORS

We experiment with 10 popular HTTP processors in this work, us-
ing the latest stable versions available at the time of writing. Table 9
shows specific versions of each technology, with the exception of
CDNs which do not have public release labels.

B FORMAL MUTATION DEFINITIONS

T-Reqs uses string and tree mutations to generate HTTP requests.
Here, we provide formal definitions for mutation operations.

String mutation operations.

Given:
• 𝑁 is a set of all non-terminal symbols in a CFG.
• 𝑇 is a set of all terminal symbols in a CFG.
• 𝐵 is a predefined character pool.

Let 𝑠 be a string mutable symbol represented by a CFG as

𝑠 ::= 𝑡1 |𝑡2 |...|𝑡𝑘
where 𝑠 ∈ 𝑁 , and 𝑡𝑖 ∈ 𝑇 .

Given the expansion of 𝑠 → 𝑡1, where 𝑡1 is a sequence of 𝑛
characters 𝑐1𝑐2 ...𝑐𝑛 , a string mutator is represented as a function
𝑓 (𝑡1, 𝑜𝑝, 𝑗, 𝑏) where 𝑜𝑝 ∈ {delete-char, replace-char, insert-char},
1 ≤ 𝑗 ≤ 𝑛, and 𝑏 ∈ 𝐵:

𝑓 (𝑐1 ...𝑐𝑛, 𝑜𝑝, 𝑗, 𝑏) =


𝑐1 ...𝑐 𝑗−1𝑐 𝑗+1 ...𝑐𝑛, if 𝑜𝑝 = 𝑑𝑒𝑙𝑒𝑡𝑒-𝑐ℎ𝑎𝑟
𝑐1 ...𝑐 𝑗−1𝑏𝑐 𝑗+1 ...𝑐𝑛, if 𝑜𝑝 = 𝑟𝑒𝑝𝑙𝑎𝑐𝑒-𝑐ℎ𝑎𝑟
𝑐1 ...𝑐 𝑗𝑏𝑐 𝑗+1 ...𝑐𝑛, if 𝑜𝑝 = 𝑖𝑛𝑠𝑒𝑟𝑡-𝑐ℎ𝑎𝑟

Tree mutation operations.

Given:
• 𝑁 is a set of all non-terminal symbols in a CFG.
• 𝑇 is a set of all terminal symbols in a CFG.
• 𝐻 is a predefined symbol pool.

Let 𝑠 be a tree mutable symbol which is represented by a CFG as

𝑠 ::= <𝑛1>...<𝑛𝑘> | <𝑛𝑙>...<𝑛𝑚> | ...

where 𝑠 ∈ 𝑁 , 𝑛𝑖 ∈ 𝑁 for any 1 ≤ 𝑖 ≤ 𝑘 and 𝑙 ≤ 𝑖 ≤ 𝑚. Given the
expansion of 𝑠 → <𝑛1>...<𝑛𝑘>, a tree mutator is represented as a
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function of the symbol 𝑠 , an operation 𝑜𝑝 , a sequence position 𝑗 ,
and a symbol <ℎ>:

𝑔(<𝑛1>...<𝑛𝑘>, 𝑜𝑝, 𝑗, <ℎ>) =



<𝑛1>...<𝑛 𝑗−1><𝑛 𝑗+1>...<𝑛𝑘>,
if 𝑜𝑝 = 𝑑𝑒𝑙𝑒𝑡𝑒-𝑒𝑙𝑒𝑚

<𝑛1>...<𝑛 𝑗−1><ℎ><𝑛 𝑗+1>...<𝑛𝑘>,
if 𝑜𝑝 = 𝑟𝑒𝑝𝑙𝑎𝑐𝑒-𝑒𝑙𝑒𝑚

<𝑛1>...<𝑛 𝑗><ℎ><𝑛 𝑗+1>...<𝑛𝑘>,
if 𝑜𝑝 = 𝑖𝑛𝑠𝑒𝑟𝑡-𝑒𝑙𝑒𝑚

where 𝑜𝑝 is the operation type, 1 ≤ 𝑗 ≤ 𝑘 , and ℎ ∈ 𝐻 .

C FULL GRAMMAR FOR THE REQUEST

HEADERS EXPERIMENT

The request headers experiment tests all standard HTTP request
headers together with numerous valid values. Listing 20 shows the
full grammar where an expansion for every 67 header is defined. In
addition, we present expansions for sub-elements of each header.

<start> ::= <request>
<request> ::= <method-name><request-uri><http-version><base><entity-size-header>

<some-header><some-header><body>↩→
<request-uri> ::= " /_URI_ "
<http-version> ::= "HTTP/0.9" | "HTTP/1.0" | "HTTP/1.1"
<method-name> ::= "GET" | "HEAD" | "POST" | "PUT" | "DELETE" | "CONNECT" |

"OPTIONS" | "TRACE"↩→
<base> ::= "\r\nHost: _HOST_\r\nConnection:close\r\nX-Request-ID:

_REQUEST_ID_\r\n"↩→
<entity-size-header> ::= <content-length> | <chunked-transfer-encoding> |

<content-length><chunked-transfer-encoding> |
<chunked-transfer-encoding><content-length>

↩→
↩→
<some-header> ::= <accept> | <accept-charset> | <accept-encoding> |

<accept-language> | <accept-ranges> | <allow> | <alpn> | <alt-used> |
<authorization> | <cache-control> | <caldav-timezones> | <cdn-loop> |
<content-encoding> | <content-language> | <content-length> |
<content-location> | <cookie> | <date> | <depth> | <destination> |
<early-data> | <expect> | <expires> | <forwarded> | <from> | <http2-settings>
| <if> | <if-match> | <if-modified-since> | <if-none-match> | <if-range> |
<if-schedule-tag-match> | <if-unmodified-since> | <link> | <max-forwards> |
<mime-version> | <odata-isolation> | <odata-maxversion> | <odata-version> |
<ordering-type> | <origin> | <oscore> | <overwrite> | <position> | <pragma> |
<prefer> | <proxy-authorization> | <range> | <referer> | <schedule-reply> |
<sec-token-binding> | <sec-websocket-accept> | <sec-websocket-extensions> |
<sec-websocket-key> | <sec-websocket-protocol> | <sec-websocket-version> |
<slug> | <te> | <timeout> | <topic> | <trailer> | <transfer-encoding> | <ttl>
| <urgency> | <upgrade> | <user-agent> | <via>

↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
↩→
<newline> ::= "\r\n"
<body> ::=

"\r\nA\r\nBBBBBBBBBB\r\n0\r\n\r\nBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"

↩→
↩→
<comma> ::= ","
<colon> ::= ":"
<semicolon> ::= ";"
<space> ::= " "
<start-tag> ::= "<"
<end-tag> ::= ">"
<start-parenthesis> ::= "("
<end-parenthesis> ::= ")"
<equals> ::= "="
<boolean> ::= "T" | "F"
<quality> ::= "q=1.0" | "q=0.0"
<chunked-transfer-encoding> ::=

<transfer-encoding-header-name><colon><chunked-encoding><newline>↩→
<chunked-encoding> : "chunked"
<accept> ::= <accept-header-name><colon><accept-types><newline>
<accept-header-name> ::= "Accept"
<accept-types> ::= <accept-type> | <accept-type><comma><accept-type>
<accept-type> ::= <mime-type-subtype><semicolon><quality>
<mime-type-subtype> ::= "*/*" | "application/octet-stream" | "application/pdf" |

"application/pkcs8" | "application/zip" | "audio/mpeg" | "audio/vorbis" |
"audio/example" | "font/woff" | "font/ttf" | "font/otf" | "image/jpeg" |
"image/png" | "image/svg+xml" | "model/3mf" | "text/html" | "video/mp4"

↩→
↩→
↩→
<accept-charset> ::= <accept-charset-header-name><colon><charsets><newline>
<accept-charset-header-name> ::= "Accept-Charset"
<charsets> ::= <charset> | <charset><comma><charset>
<charset> ::= <charset-name><semicolon><quality>

<charset-name> ::= "utf-16" | "utf-16BE" | "utf-32" | "utf-32BE" | "us-ascii" |

"iso-8859-1" | "utf-7" | "utf-8"↩→
<accept-encoding> ::= <accept-encoding-header-name><colon><encodings><newline>
<accept-encoding-header-name> ::= "Accept-Encoding"
<encodings> ::= <encoding> | <encoding><comma><encoding>
<encoding> ::= <encoding-name><semicolon><quality>
<encoding-name> ::= "gzip" | "compress" | "deflate" | "br" | "identity" |

"chunked"↩→
<accept-language> ::= <accept-language-header-name><colon><languages><newline>
<accept-language-header-name> ::= "Accept-Language"
<languages> ::= <language> | <language><comma><language>
<language> ::= <language-name><semicolon><quality>
<language-name> ::= "fr" | "en" | "de"
<accept-ranges> ::= <accept-ranges-header-name><colon><range-unit><newline>
<accept-ranges-header-name> ::= "Accept-Ranges"
<range-unit> ::= "bytes" | "none"
<allow> ::= <allow-header-name><colon><method-names><newline>
<allow-header-name> ::= "Allow"
<method-names> ::= <method-name> | <method-name><comma><method-name>
<alpn> ::= <alpn-header-name><colon><protocol-ids><newline>
<alpn-header-name> ::= "ALPN"
<protocol-ids> ::= <protocol-id> | <protocol-id><comma><protocol-id>
<protocol-id> ::= "http%2F1.1" | "h2"
<alt-used> ::= <alt-used-header-name><colon><alt-svc><newline>
<alt-used-header-name> ::= "Alt-Used"
<alt-svc> : "alternate.example.net"
<authorization> ::=

<authorization-header-name><colon><auth-scheme><space><creds><newline>↩→
<authorization-header-name> ::= "Authorization"
<auth-scheme> : "Basic" | "Bearer","Digest","HOBA","Mutual","Negotiate","OAuth",

"SCRAM-SHA-1","SCRAM-SHA-256","vapid"↩→
<creds> ::= "123456" | "YWxhZGRpbjpvcGVuc2VzYW1l"
<cache-control> ::=

<cache-control-header-name><colon><cache-directives><newline>↩→
<cache-control-header-name> ::= "Cache-Control"
<cache-directives> ::= <cache-directive> |

<cache-directive><comma><cache-directive>↩→
<cache-directive> : "max-age=5" | "max-stale=5" | "min-fresh=5" | "no-cache" |

"no-store" | "no-transform" | "only-if-cached"↩→
<caldav-timezones> ::= <caldav-timezones-header-name><colon><boolean><newline>
<caldav-timezones-header-name> ::= "CalDav-Timezones"
<cdn-loop> ::= <cdn-loop-header-name><colon><cdn-infos><newline>
<cdn-loop-header-name> ::= "CDN-Loop"
<cdn-infos> ::= <cdn-info> | <cdn-info><comma><cdn-info>
<cdn-info> : "foo123.foocdn.example" | "barcdn.example; trace='abcdef'" |

"AnotherCDN; abc=123; def='456'"↩→
<content-encoding> ::=

<content-encoding-header-name><colon><transfer-encodings><newline>↩→
<content-encoding-header-name> ::= "Content-Encoding"
<content-language> ::= <content-language-header-name><colon><languages><newline>
<content-language-header-name> ::= "Content-Language"
<content-length> ::=

<content-length-header-name><colon><content-length-value><newline>↩→
<content-length-header-name> ::= "Content-Length"
<content-length-value> ::= "40" | "60" | "80"
<content-location> ::=

<content-location-header-name><colon><content-location-value><newline>↩→
<content-location-header-name> ::= "Content-Location"
<content-location-value> ::= <absolute-uri> | <relative-uri>
<absolute-uri> : "http://example.com/example"
<relative-uri> ::= "/example"
<cookie> ::= <cookie-header-name><colon><cookie-value><newline>
<cookie-header-name> ::= "Cookie"
<cookie-value> : "SID=31d4d96e407aad42" | "PHPSESSID=298zf09hf012fh2;

csrftoken=u32t4o3tb3gg43; _gat=1"↩→
<date> ::= <date-header-name><colon><date-value><newline>
<date-header-name> ::= "Date"
<date-value> : "Sun, 06 Nov 1994 08:49:37 GMT" | "Sun, 06 Nov 2094 08:49:37 GMT"
<depth> ::= <depth-header-name><colon><depth-value><newline>
<depth-header-name> ::= "Depth"
<depth-value> : "0" | "1" | "infinity"
<destination> ::= <destination-header-name><colon><absolute-uri><newline>
<destination-header-name> ::= "Destination"
<early-data> ::= <early-data-header-name><colon><early-data-value><newline>
<early-data-header-name> ::= "Early-Data"
<early-data-value> : "1"
<expect> ::= <expect-header-name><colon><expect-value><newline>
<expect-header-name> ::= "Expect"
<expect-value> : "100-continue"
<expires> ::= <expires-header-name><colon><date-value><newline>
<expires-header-name> ::= "Expires"
<forwarded> ::= <forwarded-header-name><colon><by><space><absolute-uri><newline>
<forwarded-header-name> ::= "Forwarded"
<by> ::= "by"
<from> ::= <from-header-name><colon><mailbox><newline>
<from-header-name> ::= "From"
<mailbox> ::= "webmaster@w3.org"
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<http2-settings> ::= <http2-settings-header-name><colon><setting><newline>
<http2-settings-header-name> ::= "HTTP2-Settings"
<setting> ::= "AAMAAABkAARAAAAAAAIAAAAA"
<if> ::= <if-header-name><colon><tag-list><newline>
<if-header-name> ::= "If"
<urn-tag> ::= <start-tag><urn-value><end-tag>
<urn-value> ::= "urn:uuid:181d4fae-7d8c-11d0-a765-00a0c91e6bf2" |

"urn:uuid:58f202ac-22cf-11d1-b12d-002035b29092"↩→
<tag-list> : <start-parenthesis><urn-tag><end-parenthesis>
<if-match> ::= <if-match-header-name><colon><entity-tags><newline>
<if-match-header-name> ::= "If-Match"
<entity-tags> ::= <entity-tag> | <entity-tag><comma><entity-tag>
<entity-tag> : "*" | "'xyzzy'"
<if-modified-since> ::=

<if-modified-since-header-name><colon><date-value><newline>↩→
<if-modified-since-header-name> ::= "If-Modified-Since"
<if-none-match> ::= <if-none-match-header-name><colon><entity-tags><newline>
<if-none-match-header-name> ::= "If-None-Match"
<if-range> ::= <if-range-header-name><colon><if-range-value><newline>
<if-range-header-name> ::= "If-Range"
<if-range-value> ::= <entity-tag> | <date-value>
<if-schedule-tag-match> ::=

<if-schedule-tag-match-header-name><colon><entity-tag><newline>↩→
<if-schedule-tag-match-header-name> ::= "If-Schedule-Tag-Match"
<if-unmodified-since> ::=

<if-unmodified-since-header-name><colon><date-value><newline>↩→
<if-unmodified-since-header-name> ::= "If-Unmodified-Since"
<link> ::= <link-header-name><colon><link-value><newline>
<link-header-name> ::= "Link"
<link-value> ::= <start-tag><absolute-uri><end-tag>
<max-forwards> ::=

<max-forwards-header-name><colon><max-forwards-value><newline>↩→
<max-forwards-header-name> ::= "Max-Forwards"
<max-forwards-value> : "0" | "1"
<mime-version> ::=

<mime-version-header-name><colon><mime-version-value><newline>↩→
<mime-version-header-name> ::= "MIME-Version"
<mime-version-value> : "1.0" | "1.1"
<odata-isolation> ::=

<odata-isolation-header-name><colon><odata-isolation-value><newline>↩→
<odata-isolation-header-name> ::= "OData-Isolation"
<odata-isolation-value> : "snapshot"
<odata-maxversion> ::=

<odata-maxversion-header-name><colon><odata-version-value><newline>↩→
<odata-maxversion-header-name> ::= "OData-MaxVersion"
<odata-version-value> : "4.0"
<odata-version> ::=

<odata-version-header-name><colon><odata-version-value><newline>↩→
<odata-version-header-name> ::= "OData-Version"
<ordering-type> ::=

<ordering-type-header-name><colon><ordering-type-value><newline>↩→
<ordering-type-header-name> ::= "Ordering-Type"
<ordering-type-value> ::= "DAV:unordered" | "DAV:custom" |

"http://example.org/example.html"↩→
<origin> ::= <origin-header-name><colon><origin-value><newline>
<origin-header-name> ::= "Origin"
<origin-value> ::= "http://example.com" | "null"
<oscore> ::= <oscore-header-name><colon><oscore-value><newline>
<oscore-header-name> ::= "OSCORE"
<oscore-value> ::= "CSU" | "AA"
<overwrite> ::= <overwrite-header-name><colon><boolean><newline>
<overwrite-header-name> ::= "Overwrite"
<position> ::= <position-header-name><colon><position-value><newline>
<position-header-name> ::= "Position"
<position-value> : "first" | "last" | "after example.html"
<pragma> ::= <pragma-header-name><colon><pragma-directive><newline>
<pragma-header-name> ::= "Pragma"
<pragma-directive> : "no-cache"
<prefer> ::= <prefer-header-name><colon><preferences><newline>
<prefer-header-name> ::= "Prefer"
<preferences> ::= <preference> | <preference><comma><preference>
<preference> : "respond-async" | "wait=100" | "handling=lenient"
<proxy-authorization> ::=

<proxy-authorization-header-name><colon><auth-scheme><space><creds><newline>↩→
<proxy-authorization-header-name> ::= "Proxy-Authorization"
<range> ::= <range-header-name><colon><range-unit><equals><range-value><newline>
<range-header-name> ::= "Range"
<range-value> ::= "5-8" | "5-"
<referer> ::= <referer-header-name><colon><absolute-uri><newline>
<referer-header-name> ::= "Referer"
<schedule-reply> ::= <schedule-reply-header-name><colon><boolean><newline>
<schedule-reply-header-name> ::= "Schedule-Reply"
<sec-token-binding> ::=

<sec-token-binding-header-name><colon><sec-token-binding-value><newline>↩→
<sec-token-binding-header-name> ::= "Sec-Token-Binding"
<sec-token-binding-value> ::= "AIkAAgBBQLgtRpWFPN66kxhxGrtaKrzcMtHw7HV8"

<sec-websocket-accept> ::=

<sec-websocket-accept-header-name><colon><sec-websocket-accept-value><newline>↩→
<sec-websocket-accept-header-name> ::= "Sec-Websocket-Accept"
<sec-websocket-accept-value> ::= "s3pPLMBiTxaQ9kYGzzhZRbK+xOo="
<sec-websocket-extensions> ::= <sec-websocket-extensions-header-name><colon>

<sec-websocket-extensions-values><newline>↩→
<sec-websocket-extensions-header-name> ::= "Sec-Websocket-Extensions"
<sec-websocket-extensions-values> ::= <sec-websocket-extensions-value> |

<sec-websocket-extensions-value><comma><sec-websocket-extensions-value>↩→
<sec-websocket-extensions-value> ::= "deflate-stream" | "mux" | "max-channels:4;

flow-control"↩→
<sec-websocket-key> ::=

<sec-websocket-key-header-name><colon><sec-websocket-key-value><newline>↩→
<sec-websocket-key-header-name> ::= "Sec-Websocket-Key"
<sec-websocket-key-value> ::= "dGhlIHNhbXBsZSBub25jZQ=="
<sec-websocket-protocol> ::=

<sec-websocket-protocol-header-name><colon><sec-websocket-protocol-values><newline>↩→
<sec-websocket-protocol-header-name> ::= "Sec-Websocket-Protocol"
<sec-websocket-protocol-values> ::= <sec-websocket-protocol-value> |

<sec-websocket-protocol-value><comma><sec-websocket-protocol-value>↩→
<sec-websocket-protocol-value> ::= "chat" | "superchat"
<sec-websocket-version> ::=

<sec-websocket-version-header-name><colon><sec-websocket-version-value><newline>↩→
<sec-websocket-version-header-name> ::= "Sec-Websocket-Version"
<sec-websocket-version-value> ::= "13"
<slug> ::= <slug-header-name><colon><slug-value><newline>
<slug-header-name> ::= "Slug"
<slug-value> ::= "The Beach at S%C3%A8te"
<te> ::= <te-header-name><colon><te-encodings><newline>
<te-header-name> ::= "TE"
<te-encodings> ::= <te-encoding> | <te-encoding><comma><te-encoding>
<te-encoding> ::= <te-encoding-name><semicolon><quality>
<te-encoding-name> ::= "gzip" | "compress" | "deflate" | "br" | "identity" |

"chunked" | "trailers"↩→
<timeout> ::= <timeout-header-name><colon><timeout-values><newline>
<timeout-header-name> ::= "Timeout"
<timeout-values> ::= <timeout-value> | <timeout-value><comma><timeout-value>
<timeout-value> ::= "Infinite" | "Second-4100000000"
<topic> ::= <topic-header-name><colon><topic-value><newline>
<topic-header-name> ::= "Topic"
<topic-value> ::= "upd"
<trailer> ::= <trailer-header-name><colon><trailer-value><newline>
<trailer-header-name> ::= "Trailer"
<trailer-value> ::= "Expires"
<transfer-encoding> ::=

<transfer-encoding-header-name><colon><transfer-encodings><newline>↩→
<transfer-encoding-header-name> ::= "Transfer-Encoding"
<transfer-encodings> ::= <encoding-name> | <encoding-name><comma><encoding-name>
<ttl> ::= <ttl-header-name><colon><ttl-value><newline>
<ttl-header-name> ::= "TTL"
<ttl-value> ::= "0" | "1"
<urgency> ::= <urgency-header-name><colon><urgency-value><newline>
<urgency-header-name> ::= "Urgency"
<urgency-value> ::= "very-low" | "low" | "normal" | "high"
<upgrade> ::= <upgrade-header-name><colon><upgrade-values><newline>
<upgrade-header-name> ::= "Upgrade"
<upgrade-values> ::= <upgrade-value> | <upgrade-value><comma><upgrade-value>
<upgrade-value> ::= "websocket" | "HTTP/2.0" | "SHTTP/1.3" | "IRC/6.9" |

"RTA/x11"↩→
<user-agent> ::= <user-agent-header-name><colon><user-agent-value><newline>
<user-agent-header-name> ::= "User-Agent"
<user-agent-value> ::= "curl/7.16.3 libcurl/7.16.3 OpenSSL/0.9.7l zlib/1.2.3"
<via> ::= <via-header-name><colon><via-values><newline>
<via-header-name> ::= "Via"
<via-values> ::= <via-value> | <via-value><comma><via-value>
<via-value> ::= "1.0 fred" | "1.1 p.example.net"

Listing 20: The full grammar for the request headers experiment.
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