
Web Cache Deception Escalates!

Seyed Ali Mirheidari
University of Trento &

Splunk Inc.

Matteo Golinelli
University of Trento

Kaan Onarlioglu
Akamai Technologies

Engin Kirda
Northeastern University

Bruno Crispo
University of Trento

Abstract
Web Cache Deception (WCD) tricks a web cache into erro-
neously storing sensitive content, thereby making it widely
accessible on the Internet. In a USENIX Security 2020 paper
titled “Cached and Confused: Web Cache Deception in the
Wild ”, researchers presented the first systematic exploration
of the attack over 340 websites. This state-of-the-art approach
for WCD detection injects markers into websites and checks
for leaks into caches. However, this scheme has two funda-
mental limitations: 1) It cannot probe websites that do not
present avenues for marker injection or reflection. 2) Marker
setup is a burdensome process, making large-scale measure-
ments infeasible. More generally, all previous literature on
WCD focuses solely on personal information leaks on web-
sites protected behind authentication gates, leaving important
gaps in our understanding of the full ramifications of WCD.

We expand our knowledge of WCD attacks, their spread,
and implications. We propose a novel WCD detection method-
ology that forgoes testing prerequisites, and utilizes page iden-
ticality checks and cache header heuristics to test any website.
We conduct a comparative experiment on 404 websites, and
show that our scheme identifies over 100 vulnerabilities while
“Cached and Confused” is capped at 18. Equipped with a tech-
nique unhindered by the limitations of the previous work, we
conduct the largest WCD experiment to date on the Alexa
Top 10K, and detect 1188 vulnerable websites. We present
case studies showing that WCD has consequences well be-
yond personal information leaks, and that attacks targeting
non-authenticated pages are highly damaging.

1 Introduction

A web cache refers to any technology that fronts a busy web
infrastructure with the goal of temporarily storing and quickly
serving frequently accessed objects. That translates to reduced
load for servers, and better performance for clients.

The security community is no stranger to attacks targeting
web caches. These often fall under one of two categories;

poisoning caches with an exploit payload to be delivered
to unsuspecting clients, or tricking the cache into storing
confidential information which is then publicly exposed on
the Internet. Attacks date back to the early 2000s, and the
fundamental techniques have not significantly changed over
the years – but the attack surface and damage potential have.

Content Delivery Networks (CDNs), which are globally
distributed Internet overlay networks made up of caching re-
verse proxies, have become a ubiquitous component of many
online systems that have stringent scalability, availability, and
performance requirements. Official deployment figures pub-
lished by three major CDN vendors Akamai, Cloudflare, and
Fastly give us a glimpse of the vast amount of traffic prox-
ied via these web caches [2, 9, 17]. A recent measurement
by Guo et al. shows that 74% of the Alexa Top 1K websites
utilize a CDN for delivery [22]. As of June 2021, BuiltWith
estimates that of the top 10K, 100K, and 1M websites they
observe, 71.79%, 62.70%, 46.59% are behind a CDN, respec-
tively, with upward trends [5]. Combined with many other,
stand-alone caching proxies (e.g., Squid, Varnish [42, 48])
and caching servers (e.g., Apache, NGINX [4, 37]) sprinkled
along the Internet, it is evident that web caches are rapidly
becoming critical infrastructure. That, in turn, considerably
increases the likelihood and impact of a web cache attack.

As this evolution of caching technologies keeps raising the
stakes, a surge of interest in novel exploitation techniques
follow (e.g., [20, 29–31, 36, 38]). Notably, Omer Gil helped
put the spotlight on this threat in 2017 with his work on
Web Cache Deception (WCD), an attack that tricks a publicly
accessible proxy into caching and leaking sensitive content
normally intended to be uncacheable [20, 21].

While Gil described proof-of-concept attacks on specific
high-profile targets, Mirheidari et al. published “Cached and
Confused” (or CC for short), the first work that explored the
causes and consequences of WCD within a scientific frame-
work in 2020 [36]. In particular, the authors proposed a detec-
tion methodology that involves manually creating accounts
on websites to inject unique markers into user-editable fields,
and then testing the websites with WCD exploits, checking

1

for the presence of markers in server responses. If the marker
is present, that would indicate erroneous caching of a page
containing user information, or in other words, a successful
attack. The authors employed this methodology to conduct
a large-scale measurement on 340 websites, found 37 to be
impacted, and concluded that WCD is a widespread threat.

While the literature described above is functional and valu-
able as a starting point, we nevertheless observe two funda-
mental issues with the previous work, which limit the security
community’s understanding of WCD.

First, previous work solely investigates attacks on user-
provided personal information protected behind authentica-
tion gates, and therefore, the aforementioned marker injec-
tion methodology is specifically crafted to detect erroneous
caching of pages that contain such information. This approach
falls short of testing pages that do not reflect user input, where
there are no avenues for marker injection. Furthermore, there
is a plethora of security-critical secrets (e.g., CSRF tokens,
CSP nonces, OAuth state parameters) on publicly accessible
pages that do not require authentication, or on websites that
do not support creating user accounts at all. In such cases,
marker injection is not possible or meaningful. Existing ap-
proaches have no way to test those websites, and consequently
no visibility into the WCD vulnerabilities they may contain.

Second, a marker-based approach necessitates a costly pro-
cess for creating and populating user accounts on every tested
website, posing a roadblock to scaling up the experiments.
As Mirheidari et al. also explained in their paper, this over-
head limited their experiments to 295 websites using Google
OAuth and 45 others where accounts had to be manually cre-
ated, and therefore biased their results. In all cases, user inputs
were identified and markers injected manually.

In this paper, we set out to propose a WCD detection
methodology that is not hindered by the attack surface cov-
erage and scalability limitations of the previous work. We
subsequently aim to gain new insights into the severity and
spread of WCD attacks.

We first present a novel methodology for detecting WCD
vulnerabilities (Web Cache Deception Escalates, or DE for
short). Our approach uses content identicality checks and
HTTP response header heuristics in lieu of markers, and can
identify vulnerabilities on any website. Eliminating markers
also means that there is no manual setup phase involved.

We conduct an initial study on a dataset of 404 websites,
and make a three-way comparison between CC and two varia-
tions of DE. Our results show that CC finds only 18 vulnerable
websites, whereas our approach significantly outperforms the
state-of-the-art by detecting over 100.

Equipped with an effective methodology that is not bound
by coverage or scalability limitations, we next perform the
largest-scale WCD experiment to date on the Alexa Top 10K.
We detect 1188 vulnerable websites. We analyze and discuss
the vulnerabilities in detail, presenting concrete evidence that
WCD attacks that do not target personal information and do

not exploit pages behind authentication gates are still highly
damaging. Our findings reaffirm that WCD is a serious threat,
but also show WCD impacts the Internet at a much greater
scale than previously estimated.

To summarize, we make the following contributions:

• We present a novel methodology DE to detect WCD
vulnerabilities. DE addresses the coverage and scalability
limitations of the state-of-the-art approach for detecting
WCD in the wild.

• We conduct a comparative experiment on 404 websites,
evaluating the pros and cons of different WCD detection
methodologies. We show that our approach DE signifi-
cantly outperforms CC.

• We perform the largest-scale measurement experiment to
date for detecting WCD in the wild, testing 10K websites.
We identify 1188 vulnerable websites.

• We discuss case studies on real-life vulnerabilities im-
pacting high-profile websites, presenting evidence for
the first time that WCD attacks pose a serious threat
beyond leaking personal information.

Availability. Our source code is publicly available on the
authors’ websites.

Disclosure. The authors of this work and “Cached and
Confused” overlap. This is the follow-up to our previous
WCD research.

2 Background & Research Goals

We first present an overview of web caches and how they can
be exploited via WCD attacks. As our work extends the prior
art on cache attacks, we also present an early discussion of
related work and differentiate our research goals.

2.1 Web Caches
Even with troves of personal and sensitive data traversing
the Internet, a disproportionately large slice of traffic is made
up of content available for general consumption. These in-
clude static web pages, style sheets, JavaScript, documents,
multimedia, software downloads, and streaming applications,
which cover the whole gamut of possible sizes and access
patterns. Repeated transfers of such objects can quickly get
costly for both servers and clients, and even impact the overar-
ching Internet infrastructure involved in traffic delivery. Web
caches are designed to address this problem.

A web cache conceptually sits between a user issuing a
web request and the destination the requested object originates
from – hence often called the origin server. Web caches act
as man-in-the-middle proxy devices, intercept the traffic, and
temporarily store objects so that subsequent requests for the

2

GET /profile/not_a_file.css

200 OK
Cache-Control: no-store

1

WWW

Web Server
Victim

Web Cache

Static file extension?
Honor cache headers?

Cacheable?

Cacheable?

GET /profile/not_a_file.css

GET /profile Reroute
2

3

Figure 1: WCD in action. A social engineering victim clicks on a malicious URL, which in turn tricks a web cache into storing
sensitive profile information, publicly exposing it on the Internet.

same can be quickly served from the cache. This reduces the
round-trip time for the requester, load for the server, and the
overall traffic volume for the Internet infrastructure.

Web caches are implemented at multiple stages on the
traffic delivery path, starting from the private caches inside
browsers, ending at the application caches deployed together
with the origin server, and any caching proxies that may lie in-
between. Foremost, Content Delivery Networks (CDNs) with
their global networks of caching proxies (i.e., edge servers)
have become pervasive [5, 22].

Web caches are designed for storing static objects that do
not have confidentiality requirements, whereas dynamically
generated content that includes personal or sensitive informa-
tion for each different client must be fetched from the origin
afresh with each request. It is important to point out that one
should not conflate static content with public content. For
instance, public web pages may still contain unique, sensitive
parameters dynamically generated for each visitor.

CDNs offer numerous options for website administrators
to configure the caching behavior according to their needs.
For example, caching decisions can be made based on the
request endpoint, file extension, query string parameters, pres-
ence of a cookie, request headers, response content type, or a
complex combination of many similar parameters [8, 12, 13].
More recently, major CDNs have also started to offer edge
computation capabilities, enabling website operators to make
these decisions programmatically [1, 11, 15].

Finally, the HTTP/1.1 specification defines the Cache-
Control response headers, allowing an origin to indicate to
all the downstream caches how a response body should be
handled [18]. However, note that all major CDN providers
allow for disregarding these cache control headers, and as
Mirheidari et al. showed previously, some indeed have default
configurations that do [36].

2.2 Web Cache Deception
Web Cache Deception (WCD) is an attack that exploits the
request processing discrepancies between a web cache and
an origin server, and subsequently tricks the cache into er-
roneously storing sensitive content. WCD was introduced
by Omer Gil in 2017 [20, 21]. Below, we demonstrate the
attack through a hypothetical case inspired by Gil’s original
proof-of-concept.

Figure 1 represents a typical deployment model where the
origin application server is fronted by a cache. The cache
server is configured to store frequently accessed static objects
as determined by checking their file extensions. The attack
begins when a miscreant crafts a malicious link containing
the URL to a page with sensitive user profile details, but
also appends to it an invalid path component that appears
to be a static file. In this case, “example.com/profile/” is
the legitimate page being targeted, and “not_a_file.css” is
a reference to a non-existent style sheet. The attacker then
distributes this link (i.e., the attack URL containing a WCD
payload) via social engineering channels, and the attack plays
out as follows.

1. The victim clicks on the link and their browser issues the
HTTP request for the resource. The web cache receives
and promptly forwards the request to the origin server.

2. The origin receives the request for the made-up resource
and sees that the referenced style sheet does not exist.
Therefore, it strips away the invalid path component, and
reroutes the request to the “/profile” endpoint instead.
The server indicates that the profile details should not be
cached by setting the appropriate cache control headers
in the response.

3. The web cache receives back the response and consults
its caching rules. Oblivious to the request rewriting tak-

3

ing place at the origin, the cache finds a match indicating
that .css extensions are cacheable. While there may be
cache control headers present in the response, the cache
is not configured to honor upstream headers. The web
cache concludes that the response is safe to store. At this
point, the sensitive content is publicly accessible under
the URL “example.com/profile/not_a_file.css”.

This attack is possible due to the complex interactions be-
tween web caches, origins, and their administrators, which
collectively lead to myriad potential HTTP processing dis-
crepancies. For example, the request rerouting in Step 2 is
a common behavior implemented by web frameworks that
follow clean URL principles, as opposed to treating URLs as
filesystem paths [50]. However, this backend logic is invisible
from the caching proxy’s vantage point. Similarly, ignoring
upstream cache control headers is common practice and some-
times the default web cache configuration [36], for instance,
in a large enterprise environment, where centralized manage-
ment of caching rules is preferable to individually configuring
web servers to return the correct headers. All in all, detecting
and mitigating WCD is a non-trivial task, and neither applica-
tion owners nor cache vendors are to individually blame; this
is a complex system interaction problem.

2.3 Cached and Confused
In their USENIX Security 2020 paper titled “Cached and
Confused: Web Cache Deception in the Wild”, Mirheidari et
al. presented the first study exploring WCD within a scientific
framework [36]. In particular, they proposed a methodology
for detecting WCD in the wild and conducted a large-scale
study on 340 websites drawn from the Alexa Top 1K, find-
ing 37 of them vulnerable. The authors also proposed novel
WCD payloads, or path confusion techniques, and surveyed
the top CDN vendors with their default caching configura-
tions, highlighting the factors contributing to the issue. This
WCD detection methodology is highly relevant to our work,
and we use the abbreviation CC to refer to it in the text.

At a high level, CC works as follows.

1. The tester creates an account on the website and popu-
lates user-editable fields that would normally hold per-
sonal or sensitive information with unique markers.

2. A crawler with valid authentication cookies tests the
pages of the website with WCD exploits. This crawler
simulates a logged in victim clicking on URLs contain-
ing WCD payloads.

3. A second crawler, this time without authenticating to the
site, requests the same pages targeted in the previous step.
This crawler simulates an attacker probing for successful
exploits. If the response contains a marker, one of the
exploits in the previous step was successful in tricking a

cache into storing the page, exposing the information to
an unauthenticated request.

One advantage of this approach is its robustness against
false positives; the presence of a marker is strong evidence
that an information leak is taking place. In fact, Mirheidari et
al. cite this property as one of the reasons they chose not to
employ fuzzier detection techniques. On the downside, marker
injection is a manual process. The authors also acknowledge
this limitation, which forces them to cap their experiments
at 340 websites, 295 of which are chosen specifically due to
their support for Google OAuth, easing the account creation
burden through automation support.

A more fundamental limitation of CC is that it is calibrated
for WCD scenarios that involve leakage of personal infor-
mation protected behind authentication gates. That comes
at a cost: CC has no visibility into the caching behavior of
a website when the page under test does not reflect user in-
put (i.e., markers). In fact, some websites may not even have
viable avenues for marker injection. Hence, CC forfeits the
opportunity to detect vulnerabilities on such pages in order
to achieve robust results on pages that do reflect user input.
This is significant, because erroneous caching has implica-
tions beyond personal information leaks. Dynamic pages, be
they publicly accessible or protected behind authentication
gates, may include secrets such as CSRF tokens, CSP nonces,
and OAuth state parameters, with dire consequences if stolen.
Mirheidari et al. do allude to this possibility, but they are not
equipped to explore that direction using CC.

2.4 Our Motivation & Goals
Our research is directly motivated by the limitations of prior
work on WCD, and important gaps those may have left in
the security community’s understanding of WCD’s spread
and impact. We propose a new methodology DE, which chal-
lenges the core design decisions made for the state-of-the-art
approach CC, and in doing so allows us to explore WCD in the
wild at a depth and scale previously not possible. In doing so,
we aim to equip website owners and researchers with better
awareness, techniques, and tools to mitigate vulnerabilities,
but also to estimate how easily miscreants can identify the
same vulnerabilities.

In particular, we tackle the following limitations of CC.

(P1) Coverage Problem. CC cannot test web pages that do
not reflect markers.

(P2) Scalability Problem. CC has the costly prerequisites of
account creation, user input identification, and marker
injection – all performed manually.

By addressing these limitations, our goal is to answer the
below research questions.

(Q1) How does our fuzzier WCD detection methodology DE
perform compared to marker injection?

4

(Q2) How does expanding the scope of an Internet-wide mea-
surement to 10K websites change our established under-
standing of WCD?

(Q3) What is the impact of WCD on security beyond per-
sonal information leaks? Is erroneous caching of other
types of sensitive data, and in particular, those found on
public pages not protected behind authentication gates,
practicable? If so, what are the consequences?

2.5 Other Related Work

The works we extensively discussed above remain the only
literature directly investigating WCD. Below we briefly list
other attacks on web caches and CDNs.

Web cache poisoning is a class of attacks that involves
tricking a web cache into storing a malicious payload. This
essentially escalates any reflected web application attack into
a stored one, widely distributed to every client accessing the
cache. For example, James Kettle presented a set of such
attacks on popular caching proxies [29], and more recently
introduced more advanced attacks exploiting the cache key
construction mechanisms used by these technologies [31].
In academic literature, Chen et al. exploited the inconsistent
processing of the host header values in requests to the same
effect [6]. Nguyen et al. proposed a different take on cache poi-
soning, employing erroneous negative caching (i.e., caching
of error responses) as a means to block access to websites,
resulting in a denial-of-service attack [38].

A closely related attack is HTTP request smuggling (HRS).
HRS targets the discrepancies in how proxies and origins
determine HTTP message boundaries, which can be exploited
to poison caches among other nefarious tasks. The first docu-
mented instance of practical HRS dates back to a white paper
by Linhart et al. published in 2005 [35]. HRS has seen a
resurgence in popularity like cache attacks, and researchers
proposed new variations (e.g., [30, 32, 33]). Jabiyev et al. pre-
sented the first systematic exploration of HRS across popular
server and CDN technologies via differential fuzzing [27].

The security community has made available numerous
open-source projects to simplify the detection of cache at-
tacks (e.g., [14,26,39,41]). These tools primarily aim to assist
penetration testers with their manual processes, targeting a
specific, controlled environment. On the defense front, Ama-
zon Web Services released a tool that inspects and categorizes
requests according to their RFC compliance [3]; however, the
effectiveness of this tool is yet to be quantified. All in all,
there is no generally applicable detection or defense tool for
cache attacks at this time.

Besides the caching issues under focus here, researchers
have long studied CDNs in other security contexts, including
insufficient origin validation [22], insecure mapping of clients
to edge servers [24], request forwarding problems that may
facilitate denial-of-service attacks [7, 23, 47], and use as a

censorship evasion vector [19, 25, 51]. Other works investi-
gated methods to reveal the origin addresses fronted by edge
servers, effectively bypassing the protections afforded by a
CDN [28, 49]. These works are orthogonal to our research.

3 Methodology

Our new methodology DE uses a combination of content iden-
ticality checks and header inspection heuristics to overcome
the limitations of CC. While the high-level approach is the
same (i.e., launch a WCD attack, verify its success), DE may
not be as intuitive as injecting and retrieving markers at a
first glance. Therefore we adopt a top-down presentation; we
describe the high-level scheme first, and later dive into details.

Algorithm 1: DE testing an input URL for WCD.
input :URL

1 result1← get(URL);
2 result2← get(URL);
3 if result1 6= result2 then
4 attackURL1 = generateAttackURL(URL);
5 attackURL2 = generateAttackURL(URL);
6 result1← get(attackURL1);
7 result2← get(attackURL2);
8 if result1 6= result2 and result1.cache = MISS then
9 result2← get(attackURL1);

10 if result1 = result2 and result2.cache = HIT then
11 return WCD detected;
12 end
13 end

3.1 Overview
Algorithm 1 presents the complete pseudo-code for our ap-
proach. Given a URL to test for the presence of a WCD vul-
nerability, we perform checks in three steps. If all three checks
pass, we conclude that the URL contains an exploitable WCD
vulnerability. We explain these steps below.

Step 1 – Does the URL return dynamic content? The
premise of WCD is tricking a cache into storing dynamically
generated content, as static pages are unlikely to contain sensi-
tive data. Therefore, as a first step, we request the input URL
two times, each with a fresh client state, and compare the
responses (lines 1-3). If the results are identical, we conclude
that this is a static page, and we abort the test. Otherwise, the
URL contains dynamic content, and we proceed.

Step 2 – When we launch a WCD attack, does the server
still respond with dynamic content? The next step is launch-
ing a WCD attack by modifying the input URL with a WCD
payload to craft an attack URL, and requesting it. The mod-
ification process is similar to the example we presented in

5

Figure 1; we append a path component to the URL, which
points to a non-existent style sheet. We randomize the file
name to prevent Internet users from inadvertently accessing
the same URL and getting poisoned cache contents. We use
the .css extension in our payloads following the guidance
from prior WCD literature; while the attack could work with
other static file extensions, style sheets exist on virtually all
websites, making them the optimal candidate for WCD tests.

We then make our WCD attempt by requesting this attack
URL, simulating a victim visiting the link. One consideration
here is to ensure that the server still responds with dynamic
content to the request. That may not always be the case, for
example, if the attack fails and the server responds with a
generic error page. To tackle this problem, we generate two
unique attack URLs with randomized payloads as described
above (lines 4-5), launch two attacks by requesting both (lines
6-7), and compare the results (line 8, the first condition). If
the results are identical, the attack has failed, and we abort the
test. Otherwise, if the results differ, we proceed to the final
step where we verify whether the attack was successful.

The avid reader may wonder why the dynamic content
check in Step 1 is necessary if we perform a similar check
again in Step 2. In a real-life test scenario, a website would
be probed with multiple path confusion techniques, each re-
sulting in a different attack URL and exposing new WCD
vulnerabilities – we use the 5 techniques presented in previ-
ous work, and propose 7 new ones later in our experiments.
In other words, Step 2 would be repeated many times over,
slowing down the tests and putting a heavy traffic load on
websites. The check in Step 1 gives us an early opportunity to
filter out static pages that are not of interest, using only one
request pair – a significant optimization. We need to perform
a second check in Step 2 for each WCD payload to ensure
that the server still responds to the modified URL.

Step 3 – Is the origin response to the attack URL
cacheable? Recall that for WCD to succeed, the origin server
must serve a dynamic response that erroneously gets cached.
Further breaking that down, on a vulnerable site, the attack
URL we requested in Step 2 (i.e., simulating a victim interac-
tion) must elicit a response from the origin server, but further
requests for the same attack URL must be served from the
cache (i.e., simulating how an attacker would retrieve the
sensitive content).

In this final step, we precisely perform this check by in-
specting the HTTP response returned when we first visited
the attack URL (line 6), and the response for a repeat request
for the same URL (line 9)1. Specifically, we perform two sets
of checks. First, we utilize HTTP response header heuristics
to verify that the initial request was a cache miss (i.e., it was
served by the origin), but the latter request was a cache hit
(lines 8 and 10, both second conditions). Next, we compare
the response bodies to verify that they are indeed identical

1We could have used either of the two attack URLs we generated in Step
2 to verify the attack’s success. We chose to use the first one.

(line 10, the first condition), which provides added assurance
for the correctness of our header heuristics. If both checks
pass, we conclude that the attack was successful, and that the
URL has an exploitable WCD vulnerability.

3.2 Cache Header Heuristics
DE inspects HTTP response headers to heuristically deter-
mine whether a request is served from the origin server or a
web cache in Step 3 above.

Web caches often transform responses by including a
header that indicates to the client the result of the cache
lookup. However, this mechanism is not standardized, and
cache technologies implement their own proprietary headers
(e.g., [10, 16, 40]). Therefore, we performed an exploratory
crawl of the Internet prior to this work, supplemented that
with vendor documentation, and compiled a list of header
fields and values returned by popular web caches. We present
these results in Table 1.

Note that the headers and their values show strong sim-
ilarities between different caches. Namely, all headers we
identified contain the term cache, and most values either hit
or miss. Therefore, instead of doing strict equality checks, DE
normalizes the received headers and then performs keyword
searches in them. In our exploratory study, we determined this
method to work as well as enforcing strict checks, with two
added advantages. First, this approach makes our detection
more robust against minor format or structure differences in
headers often observed in the wild, for example, due to man-
in-the-middle devices that incorrectly transform requests, or
version differences between caches. Second, it opens up the
possibility for DE to work correctly with sparsely used or pri-
vate cache technologies that may be observed in large-scale
experiments, provided that they follow the same conventions
with their headers.

3.3 Interpreting the Results
DE addresses both limitations of CC. We do not rely on the
presence of a marker or any other particular reflected input on
the page, and therefore DE can test any website for WCD (i.e.,
we resolve the coverage problem (P1)). Similarly, because
there is no initial setup necessary, DE can run large-scale
experiments on the Internet or complex private enterprise
deployments (i.e., we resolve the scalability problem (P2)).

We achieve these properties by utilizing fuzzier detection
techniques and heuristics. Heuristics can and do fail, present-
ing interesting trade-offs between DE and CC. Before we
experimentally investigate these, we explain what our scheme
is designed to detect, and the ways it can fail.

True Positives. DE is designed to detect dynamic content
that is not cacheable when requested through its normal URL,
but is erroneously cached when requested with a maliciously
crafted URL – the very definition of WCD. This definition

6

Table 1: Cache lookup status headers used by popular web caches.

CDN / Cache Header Name(s) Hit value(s) Miss value(s)

Akamai server-timing, X-Cache, X-Cache-Remote desc=HIT, TCP_HIT desc=MISS, TCP_MISS
CDN77 X-Cache HIT MISS
Cloudflare cf-cache-status HIT MISS
CloudFront x-cache Hit from cloudfront Miss from cloudfront
Fastly X-Cache HIT MISS
Google Cloud cdn_cache_status hit miss
KeyCDN X-Cache HIT MISS
Azure X-cache TCP_HIT, TCP_REMOTE_HIT TCP_MISS

Apache, ATS X-Cache HIT MISS
NGINX X-Proxy-Cache HIT MISS
Rack Cache X-Rack-Cache hit miss
Squid X-Cache HIT from * MISS from *
Varnish X-Cache HIT MISS
Unknown x-cache-info cached caching

does not make any assumptions about the impact of the attack;
the erroneously cached content may or may not be valuable
for an attacker. As long as caching happens contrary to the
informed instructions of the website owner, an exploitable
WCD vulnerability exists.

For example, some pages with non-sensitive content may
include dynamic parts containing dates, server response time
metrics, or email obfuscation strings. If these pages are nor-
mally not cacheable, but with a WCD attack they are cached,
this is a true positive for our purposes, regardless of the value
of the leaked content. The server & cache combination inter-
acts in a hazardous manner, and a future update to the page
with sensitive information would have a security impact.

False Positives. Our definition of false positives directly
follows from the above. Any finding that does not involve ac-
cidental caching of non-cacheable content is a false positive.

While this definition remains a constant, the particular rea-
sons for false positive findings are closely tied to the WCD
detection mechanism used. In CC, false positives are due to
markers that a web application intentionally reflects in its
responses. Even when there is no successful WCD attack
taking place, the marker presence incorrectly signals to the
crawler that sensitive information has leaked. Identifying such
false positives requires a manual analysis of every finding and
assessing whether the markers are returned due to WCD.

DE probes a page with a WCD payload, and checks whether
the page is dynamic and whether it is cached. If both are true,
it flags this as a finding. However, this detection mechanism
cannot distinguish between explicitly and erroneously cached
dynamic content.

Dynamic pages may still be explicitly configured to be
cacheable by the website owner. In other words, the page
would be cached even when requested normally, without a
WCD attack. This may be due to aggressive server perfor-
mance optimizations; for example, some non-sensitive dy-
namic objects could be allowed to be served from a cache,
perhaps with a short TTL, even if they go stale. Alternatively,

there could be human error; the website owner may have acci-
dentally configured a dynamic page for caching – even though
this is not an informed decision, it is still an explicit instruc-
tion. Regardless of the circumstances, DE would incorrectly
flag the situation as a successful WCD attack.

One advantage of DE over CC is that its false positives
can be identified and removed automatically, without human
analysis. This is a trivial check shown in Algorithm 2. Specif-
ically, we take each URL DE flags as vulnerable, request it
twice normally, without using a WCD payload, and use the
same header heuristics to test whether the second response
was served from the cache. A cache hit means that the URL
is still cached when there is no attack, hence a false posi-
tive. This check can also be integrated into our methodology
(Algorithm 1, lines 1-3) with no added traffic load.

Algorithm 2: Test if a DE finding is a false positive.
input :URL

1 result← get(URL);
2 result← get(URL);
3 if result.cache = HIT then
4 return False positive;
5 return True positive;

False Negatives. DE relies on cache status headers to de-
termine whether our WCD attempts indeed result in the pre-
requisite cache miss followed by a hit. Because cache status
reporting mechanisms are not standardized, servers may re-
turn headers unknown to DE, or no headers at all. Furthermore,
by design, DE does not authenticate to websites, and hence
cannot test pages behind authentication gates. As a result,
DE is bound to miss WCD vulnerabilities in the wild. The
impact of false negatives is not trivial to quantify; there exists
no ground truth. Thus, our results should be interpreted as a
lower bound on vulnerabilities.

7

4 Comparative Evaluation

We now present the results of our first experiment, where
we run both DE and CC on a dataset of 404 websites for a
comparative evaluation.

4.1 DE with Authentication
In doing this exercise, we are primarily interested in under-
standing how our scheme compares to the marker injection
approach; however, there is a confounding factor in this exper-
iment: DE cannot access pages behind authentication gates,
whereas CC was specifically designed to test those pages
only. Therefore, in order to investigate both the impact of the
protocol change and authentication state on WCD detection
efficacy, we introduce a third methodology, called DEauth.

DEauth is a hybrid approach between DE and CC. It uses
our novel detection scheme at its core, but like CC, requires
an account to be manually created on the website so that the
attack URL is requested (Algorithm 1, lines 6-7) with valid
authentication cookies, simulating a logged in victim clicking
on the malicious link. There are no other changes; DEauth

probes the cache contents with an unauthenticated request
like before, simulating an attacker (Algorithm 1, line 9).

4.2 The Experiment
We implement CC as described by Mirheidari et al. [36] and
our two new schemes inside HTTP crawlers, and perform
one crawl with each for a total of three runs. We set up our
crawler to visit pages on any subdomain we may discover on
the target website, and test at most 500 URLs on each FQDN.

We test each page with 12 attack URLs utilizing distinct
WCD payloads. These include the original invalid path exten-
sion technique we illustrated in Figure 1, 4 path confusion
techniques Mirheidari et al. proposed that exploit URL encod-
ing discrepancies, and a further 7 novel encoding tricks we
devise. We do not aim to position these new techniques as a
scientific contribution; however, they are valuable for practi-
cal bug hunting situations. Readers can refer to Appendix A
for examples and a breakdown of our findings for each.

We draw our crawl seed pool of 404 websites from the
Alexa Top 100K. We choose these targets due to the marker
injection requirements/limitations of CC, by following the
general protocol described in “Cached and Confused”. Specif-
ically, we first crawl the front pages of Alexa Top 100K,
and identify websites that support standard Single Sign-On
schemes by searching for links containing keywords (e.g.,
login, register) and OAuth & OpenID Connect parameters.
We then manually filter out websites that require sensitive
credentials such as social security numbers or bank accounts
for account creation. We end up with 404 websites, create
accounts on them, inject markers into user-editable fields, and
collect session cookies for each to be used by CC and DEauth.

This process necessarily yields a data set that carries the same
biases as the one used in “Cached and Confused”; this is an-
other limitation of CC, and it has no material impact on our
comparative analysis.

We configure the DE and DEauth crawlers to record the
page differences during dynamic content checks for websites
flagged as vulnerable, so that we can scan these with regular
expressions to detect common categories of sensitive data that
may be leaked by the attack.

In all of our experiments, we flag a tested site as vulnerable
if it contains at least one URL impacted by WCD. We believe
this is the most relevant metric for our purposes that also sup-
ports our research goals. In practice, our crawler often finds
multiple vulnerable URLs on each target website. However,
without an in-depth manual analysis of each finding, we can-
not accurately determine whether these vulnerabilities truly
stem from distinct caching configuration issues, or whether
the different URLs in fact correspond to unique pages. This
analysis is not feasible or essential for our research.

4.3 Results
Table 2 shows the results of our experiments with each
methodology, where we detected a combined total of 123
websites vulnerable to WCD. Table 3 presents a breakdown
of the leaked data we found on these sites.

True Positives. The true positive findings confirm our hy-
pothesis: Markers are severely limiting as a WCD detection
approach. Even though our dataset is specifically biased to-
ward websites that must support marker injection, many oth-
erwise vulnerable pages did not reflect those markers. In fact,
CC could only test 244 (60.40%) of the websites, but the re-
maining did not have any pages with a marker present. As
a result, CC identified only 18 vulnerable websites in our
experiments, whereas DEauth and DE performed considerably
better at 115 and 104 hits respectively.

DEauth had a slight edge over DE. As one might expect,
the difference was due to the vulnerable pages behind au-
thentication gates, which DE cannot access. For example, we
manually confirmed that a vulnerable billing settings page on
a target website was detected by DEauth, but DE was redirected
to a secure login page when testing the same URL.

Likewise, CC found 7 vulnerabilities that DE missed thanks
to its access to authenticated pages; but, in addition, it caught
2 unique vulnerabilities that even DEauth missed. We verified
that in one case this was due to the target website returning
no cache status headers, defeating our new scheme. The other
case appears to be a vulnerability that was fixed between our
two experiment runs.

Finally, DE found 5 unique vulnerabilities that neither au-
thenticated approach identified. We verified that these cases
were due to the websites either explicitly sending cache con-
trol headers that prevent caching, or quietly ignoring all cache
directives, when we attached a cookie to the request. As we

8

Table 2: WCD detection performance, i.e., the number of websites flagged as vulnerable, for each methodology. Percentages are
calculated over the entire crawl set of 404 sites.

CC DEauth DE Combined

Total Detections 21 (5.20%) 134 (33.17%) 129 (31.93%) 160 (39.60%)
True Positives 18 (4.46%) 115 (28.47%) 104 (25.74%) 123 (30.45%)
False Positives 3 (0.74%) 19 (4.70%) 25 (6.19%) 37 (9.16%)

Unique True Positives 2 (0.50%) 13 (3.22%) 5 (1.24%) —

Table 3: The number of vulnerable websites found to leak
common categories of sensitive data by each methodology.
There may be multiple leaks on a given website; columns do
not add up to totals. Percentages are calculated over the total
number of true positives for each methodology.

CC DEauth DE

CSRF Token 4 (22.22%) 35 (30.43%) 39 (37.50%)
CSP Nonce 0 (0.00%) 1 (0.87%) 1 (0.96%)
OAuth State 0 (0.00%) 3 (2.61%) 2 (1.92%)
Session ID 2 (11.11%) 3 (2.61%) 3 (2.88%)
Personal Information 18 (100.00%) 16 (13.91%) 0 (0.00%)

Total Leaks
Sensitive 18 (100.00%) 36 (31.30%) 39 (37.50%)
Potential — 56 (48.70%) 50 (48.08%)
Harmless — 23 (20.00%) 15 (14.42%)

discussed in Section 2, bypassing caching rules based on the
presence of authentication cookies is a common option web
caches provide to prevent hazardous caching. The unauthenti-
cated DE scheme successfully defeated that protection.

False Positives. Recall that the false positives of DE and
DEauth can be eliminated automatically. However, we choose
to present a clear breakdown of all false positives here to
highlight the differences between CC and our new schemes.
We apply our automated check to identify the false positives
for DE and DEauth, and perform a manual inspection of the
context around the reflected markers for CC.

DE and DEauth both had higher false positives compared to
CC. As discussed, this was due to their inability to distinguish
between explicitly and erroneously cached dynamic content.
While CC was more reliable in this department, some mark-
ers were indeed intentionally reflected in all responses from
the web application as we previously explained, and their
presence did not imply WCD. For example, one website pub-
licly listed its recent visitors, one of which was our marked
username. CC falsely flagged this as a vulnerability.

Leaks. To correctly interpret the data in Table 3, recall
that a WCD vulnerability can only result in a damaging data
leak if there is sensitive data on the page to begin with. In
our analysis, we found that some vulnerable websites did not
contain such data, and the dynamic content leaked in the cache
was harmless (e.g., timestamps, email obfuscation strings).
Other websites did contain seemingly-randomized values that

may potentially be sensitive, but these did not match any
patterns of common sensitive tokens. Unfortunately, we are
not in a position to reason about this potentially-sensitive
category without a white-box understanding of the impacted
websites’ backend logic. We reiterate that all cases still stem
from exploitable, true positive WCD findings, albeit some
without immediate consequences. We present a breakdown of
these totals at the bottom section of Table 3. Also note that, for
CC, detections are due to markers known to populate sensitive
fields, and therefore all findings are sensitive by definition.

The top slice of Table 3 presents a breakdown of the leaks
in the sensitive category, once again highlighting the differ-
ences between each approach. CC primarily detected personal
information leaks, but a small number of other security tokens
were present on the same vulnerable pages by happenstance.
DEauth also detected 16 out of these 18 leaks without relying
on markers, and myriad other sensitive leaks. DE performed
similarly well for security tokens, but could not find personal
information leaks without access to authenticated pages.

4.4 Summary

This experiment answers our first research question (Q1),
showing that the marker injection approach is limited by both
its attack surface coverage and the variety of leaks it can detect.
Overall, identicality and header heuristics enable considerably
better WCD detection. We also partially answer (Q3), demon-
strating that leaks of non-personal sensitive data with WCD
are practicable. We still need to investigate the implications
of this finding in the upcoming sections.

That being said, the idea of using an authenticated crawl-
ing approach still holds merit. Both CC and DEauth perform
well with detecting personal information leaks, whereas DE
is inherently unsuitable for the task. Where the setup over-
head is manageable (e.g., when penetration testing one’s own
environment), DEauth or perhaps a combination of all three
approaches would expose the most vulnerabilities.

Nevertheless, DE remains the only viable option for a large-
scale measurement, with its good detection performance and
zero setup overhead. Equipped with this knowledge, we pro-
ceed with our experiment on the Alexa Top 10K. The findings
in this section are already alarming, with 30.45% of our data
set containing WCD vulnerabilities – well above the estima-
tions in “Cached and Confused”.

9

Table 4: The number of websites containing at least one WCD
vulnerability, and websites that leak common categories of
sensitive data. Percentages are calculated over the entire crawl
set of 10K sites.

Vulnerable Sites 1188 (11,88%)

CSRF Token 436 (36.70%)
CSP Nonce 13 (1.09%)
OAuth State 34 (2.86%)
Session ID 63 (5.30%)

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
Alexa Rank

0

20

40

60

80

100

120

140

#
V

ul
ne

ra
bl

e
S

it
es

144

121

136 134

118

100

120
112

97
106

Figure 2: The distribution of vulnerable websites with respect
to their Alexa ranking in 1K bins.

5 Large-Scale Experiment with DE

We now present our final experiment, where we run DE on
the entire Alexa Top 10K, and describe concrete exploitation
scenarios demonstrating real-life impact.

5.1 The Experiment

This experiment generally follows the previously established
protocol, except for two important changes.

First, we enable the automated false positive filtering out-
lined in Algorithm 2, therefore eliminating all false positives
in our results. All numbers we report in this section represent
true, exploitable WCD vulnerabilities.

Second, we relax our definition of true positives by choos-
ing not to test pages containing known harmless dynamic
components. It is true that these pages may still be vulnerable
to WCD, and while that may not be an immediate threat today,
it may lead to a real-life exploit if the page is updated with
sensitive content in the future. However, we opt to forgo test-
ing these as a performance trade-off due to the limitations of
our crawler resources and to minimize the traffic we generate.
Specifically, during Step 1 of DE, we apply pattern matches on
the dynamic components we find during identicality checks.
If we detect a known email obfuscation mechanism, web ana-
lytics script, Edge Side Includes tag, timestamp, or error page
that reflects our WCD payload, we conclude that the content
is non-sensitive, and abort the test.

Services &
Software/Hardware

23%

News & Media

13%

Shopping
13%

Education &
Reference

13%

Finance & Banking

7%

Streaming Media

4% Others

27%

Figure 3: Content categories for the vulnerable websites. A
website may be labeled with multiple categories.

5.2 Results

Table 4 shows our findings. As a result of the aforementioned
changes to the experiment protocol, we no longer need to
report false positives or harmless data leaks – all flagged web-
sites have true positive findings, and leak known or potentially
sensitive values. We also do not have personal information
leaks as DE cannot automatically detect them; however, we
will demonstrate later that these findings assist us in finding
personal information leaks upon further analysis.

1188 websites among the Alexa Top 10K contain WCD vul-
nerabilities. This 11.88% incidence is significantly lower than
the 30.45% we observed in the previous experiment; but we
emphasize that the two results are not comparable. The previ-
ous dataset is non-uniformly drawn from the Alexa Top 100K
based on the viability of marker injection; it is heavily biased.
This larger dataset and the experiment have fundamentally
different characteristics. Here, we study the most popular 10K
websites likely to attract more attention from bounty hunters
and attackers, and therefore discover and mitigate their vul-
nerabilities quickly. We also filter out the harmless leaks and
report a looser lower-bound on vulnerabilities.

Figure 2 presents the distribution of vulnerable websites
with respect to their Alexa ranks, exhibiting a fairly uniform,
rectangular shape with a slight right skew. This suggests that
WCD is pervasive among the websites in our dataset with no
strong connection to their popularity ranking.

Figure 3 shows a breakdown of the vulnerable website
content categories, as determined by multiple domain classifi-
cation services and aggregated by us. These services perform
a fuzzy classification, and we only report percentages to avoid
giving the impression that the categories are definitive. Ap-
proximately a quarter of impacted websites involve financial
data and transactions, suggesting WCD may cause direct mon-
etary loss. Another quarter includes cloud service providers
and software vendors, showing that attacks could have far-
reaching consequences via supply chain attacks. News outlets,
wikis, blogs, and document stores appear to be disproportion-
ately impacted; this might be a consequence of their hosting
large static objects, and hence heavy cache use.

10

6 Security Impact & Case Studies

Our findings already imply that the leaked sensitive tokens
may be abused by an attacker to break the security mecha-
nisms each support. For instance, leaked CSRF tokens enable
confused deputy attacks, CSP nonces break defenses against
inline JavaScript inclusions, and OAuth state parameters &
session IDs enable hijacking victim accounts or stealthily
logging victims into attacker-controlled accounts.

However, the implications of our findings extend beyond
these basic attacks. In this section, we present real-life case
studies drawn from our experiment, and provide insights into
the less obvious damage potential of WCD. These discussion
points also enable us to affirmatively answer our final research
question (Q3), demonstrating that WCD has ramifications
distinct from personal information leaks.

Due to the excessive number of vulnerabilities we identi-
fied, it is not feasible to investigate all findings systematically.
The below scenarios represent an arbitrary list of real-world
attacks that nevertheless demonstrate the severity of WCD.
We chose these particular targets for manual exploration mo-
tivated by the website owners’ presence on vulnerability man-
agement platforms, so that we could rapidly communicate
and help mitigate any issues. All attacks described below
were carried out with a test user, no actual Internet users were
targeted or harmed.

Leaked Tokens Lead to Standard Attacks. We first de-
scribe two representative attacks made possible by stealing
the sensitive tokens listed in Table 4 via WCD to give readers
assurance that the impact is practical.

We found a popular travel & lodging reservation platform
to leak session IDs. We were successfully able to use this
stolen token to hijack customer service chat sessions of an
unauthenticated user. The same attack translated to authenti-
cated users as well; when a logged-in user visited the WCD
exploit link, we were able to hijack their entire session and
access complete booking details.

In another instance, we identified that the error pages on
Mozilla Thunderbird’s add-ons portal were vulnerable, and
they contained registration and login links with OAuth state
parameters. By stealing this value we launched a Login CSRF
attack [46], which allowed us to trick a victim into unknow-
ingly logging into an account we controlled, hence enabling us
to view their activity and the information they enter. Mozilla
fixed the issue within 24 hours of our notification.

These attacks demonstrate that sensitive token leaks on
publicly accessible pages pose a real threat to unauthenticated
visitors of a website as well as logged in users. As an addi-
tional empirical observation, a plethora of other traditional
CSRF and session hijacking attacks were possible via WCD,
but we noticed that damage was sometimes contained thanks
to layered defenses such as referrer checks and captchas. This
once again highlights the importance of a defense-in-depth
strategy for practical web security.

WCD Leads to Cache Poisoning. WCD is a specialized
subcategory of cache poisoning attacks, where a cache is
tricked into storing and leaking sensitive data. That being
said, the underlying mechanism for exploitation remains the
same for all such cache attacks: content is erroneously cached.
This implies that the vulnerable websites we detected may
be exposed to other varieties of cache attacks, regardless of
whether they immediately leak any sensitive data.

We found one such instance to impact a major American
payment processor. Many pages on this website were im-
pacted by a reflected cross-site scripting (XSS) vulnerability,
where the value of the X-Forwarded-Host header included in
requests was printed on the page without output sanitization.
This enabled arbitrary script injection attacks.

As with many reflected XSS attacks, the avenues for ex-
ploitation would normally be limited. However, this website
was also vulnerable to WCD. An attacker could combine the
two vulnerabilities, and consequently cause the fronting cache
to store the response together with the reflected XSS payload.
This escalates the attack to a stored XSS, where the injected
malicious payload is now automatically served from the cache
to unsuspecting clients visiting the website.

This attack illustrates that WCD has dire consequences
even when the website has no sensitive data to leak. Iden-
tifying such caching hazards is key to preventing complex,
non-obvious system issues that may be lying dormant.

Token Leaks Correlate to Personal Information Leaks.
DE is not designed to catch personal information leaks. How-
ever, our manual analysis shows that the presence of a WCD
vulnerability on a public page is often indicative of more
WCD issues that impact pages protected behind authentica-
tion gates, and therefore endanger personal information, too.

While we cannot scientifically quantify the incidence or
reasons without a dedicated study, one intuitive explanation
is that there is no fundamental difference between caching
misconfigurations that lead to WCD vulnerabilities affecting
authenticated and unauthenticated victims. Thus, a caching
rule that leads to erroneous content storage on a public page
may enable the same attack on a protected page in the absence
of a session or cookie-based cache bypass mechanism.

We selected 55 websites flagged by DE that support user
accounts, implying that they contain personal information.
We created test accounts on these websites, and attempted
WCD attacks on pages that require authentication for access.
In 10 out of 55 cases, we were successfully able to cause
personal information fields to get cached. To provide insights
into the type of information that could be leaked, these were
well-known websites including a domain registrar, a travel
reservation platform, a job application & company review
portal, an online course provider, a security product vendor,
and a cryptocurrency exchange.

While this is not conclusive evidence, 18% is a non-
negligible success rate. This suggests that our approach of
detecting WCD vulnerabilities by performing checks on pub-

11

licly accessible pages do not completely forfeit the oppor-
tunity to detect personal information leaks. Website owners
should carefully examine vulnerabilities lest they remain ex-
ploitable in different authentication contexts.

WCD Poses a Supply Chain Issue. Recently, highly-
publicized cybercrime campaigns such as the Magecart at-
tacks [45] and the SolarWinds incident [45] have put a spot-
light on supply chain attacks, alerting the security community
to the widespread damage one vulnerable supplier or ven-
dor may cause to the Internet ecosystem. In our experiment,
we found that supply chain attacks are not limited to the tra-
ditional malicious code inclusion vectors, and that a single
vulnerable online service provider with a caching hazard can
expose many websites to WCD.

We identified a multitude of vulnerable URLs in our re-
sults that share an identical subdomain and similar path com-
ponents (i.e., support.example.com/common-pattern). Upon
manual inspection, we determined these pages to be integra-
tion points with a popular customer service and support man-
agement platform. Due to the WCD vulnerabilities present
on this vendor’s platform, many (or, potentially all) of their
customers were also impacted under their respective domains.
To demonstrate the weight of the issue, 399 out of the 1188
websites we flagged were expressly due to this vulnerability,
and 57 websites were impacted by it in addition to other WCD
vectors, bringing the total to an astounding 456.

We found similar cases, involving three vendors providing
customer community management, social media integration,
and discussion board services. These were less prevalent in
our findings, each impacting less than 10 websites. Nonethe-
less, this illustrates that WCD exhibiting itself as a supply
chain vulnerability is not an isolated incident. As evidenced
by the alarming numbers, the security community would ben-
efit from investigating supply chain attacks in a broader scope
in the face of novel web cache attacks.

7 Bounty Hunting with WCD

All of the WCD vulnerabilities we have reported in this work
are exploitable, causing unintended content leaks into a public
cache. However, a working exploit does not always equate
to real-life damage; for instance, the vulnerable website may
not process any sensitive data. Beyond the case studies we
discussed above, we do not aim to measure such damage at
scale in this work – that requires a manual analysis of each
application and its data. However, we present a final empiri-
cal study to provide insights into the incidence of damaging
exploits, and how vulnerable websites mitigate damage.

We perform this study on a separate dataset of 48 random
vulnerable websites identified by running DE on domains
listed on the bug bounty platforms Hackerone, BugCrowd,
Intigriti, and YesWeHack. This is not an arbitrary choice;
obtaining the evidence we seek requires active exploitation
of websites which provide a safe harbor for such testing in

their infrastructure and reward bounties for damages that they
acknowledge as real. We limit the scope by allowing DE to
crawl a maximum of 50 pages on each website, and all manual
analysis is performed by one researcher capped at a few hours
of work. Therefore, readers should interpret our findings as
the result of a best-effort attempt, but not a comprehensive
penetration test.

Out of the 48 vulnerable websites, we were able to launch
damaging attacks on 9. These are similar to the case studies
described above, and we omit their detailed discussion. 4
vendors paid out bounties, 2 acknowledged the issues but
informed that another researcher reported it earlier, and the
remaining 3 are still under evaluation.

Below is a breakdown of the reasons why we could not
escalate the remaining WCD exploits to a damaging attack.

We were able to fully analyze the context around 24 web-
sites, but there was no data valuable for an attacker. Another
10 websites did not allow us to explore the entire application,
either disallowing public account creation, or requiring pri-
vate information (e.g., a social security number) to proceed.
We only analyzed these partially, and found no valuable data.

3 websites leaked sensitive tokens, but this was not suffi-
cient on its own. For example, a CSRF attack was stopped
thanks to layered defenses of referrer checks and captchas; a
CSP nonce leak was useless as there was no XSS vulnerability
to abuse it. 2 websites pulled sensitive data over an API at the
browser side, therefore nothing damaging was cached.

This is decidedly a limited view into how WCD exploits
escalate into end-to-end attacks. In an adversarial scenario,
attacks may also be impeded by short cache eviction times,
and cache locality in the case of distributed caches, as previ-
ously measured in “Cached and Confused”. Regardless, we
hope these added insights help qualify the core findings in
our large-scale experiment. Not every instance of WCD is an
immediate threat; however, they are still exploitable vulnera-
bilities exposing applications to unpredictable risks.

8 Ethical Considerations

No Harm to Users or the Internet. We carefully designed
the methodologies and experiments in this paper to prevent a
negative security impact on the tested websites or their users.

In particular, we never poison caches with malicious con-
tent, and never target Internet users with WCD. The personal
information leaks explored in the paper are our own markers,
and other sensitive tokens are the secrets that websites gen-
erate for our own test clients. In all case studies we play the
role of the victim and attacker; we never target other users or
launch exploits that persistently impact the target websites.

Furthermore, our path confusion techniques utilize random-
ized file names, meaning that cache keys corresponding to the
erroneously cached content cannot feasibly be predicted or
accidentally accessed by others. This is an added safeguard
against confusing the websites’ users. Even if the caches were

12

accessible, there would be no danger to users; we never inject
malicious payloads into the caches in the first place.

Coordinated Disclosure. We are committed to following
coordinated disclosure procedures that exceed the established
best practices. Unfortunately, with thousands of findings, espe-
cially those involving systematic issues that cannot be solved
by deploying a common patch and therefore are out of scope
for CERT assistance, this is not a straightforward process. The
infeasibility of common approaches to large-scale vulnerabil-
ity disclosures were documented in literature [34, 43, 44].

We adopted the guidance in the above literature to reach
out to as many impacted parties as possible. We collected
security contacts that were 1) disclosed on vulnerability man-
agement and bug bounty platforms, 2) compiled into open-
source security lists, 3) found in WHOIS records, 4) published
on the homepages of vulnerable websites. For the remaining
529 websites we could not identify a security contact for, we
emailed the generic inboxes security@ and privacy@.

These exhaust the viable options available to us. The cases
that may not be covered by the above require deep exploration
of the website or filling out non-automatable forms, which
we could only do on a best-effort basis.

We began notifications promptly after finalizing the experi-
ments, and gave website owners over 3 months to implement
mitigations before a public disclosure. Our notification emails
included our affiliation, a summary of WCD and our experi-
ments, and a report of the findings pertinent to each party.

9 Discussion & Conclusion

We directly tackled the limitations of the state-of-the-art ap-
proach in WCD vulnerability detection, subsequently conduct-
ing the largest-scale WCD measurement over 10K websites.

Let’s revisit our research questions and summarize findings.

• (Q1) We demonstrated through our comparative experi-
ment that our new methodology DE addresses both the
coverage (P1) and scalability problem (P2), and it can
indeed significantly outperform CC. However, we also
showed that CC and the authenticated variation of our
scheme, DEauth, open up opportunities to identify addi-
tional vulnerabilities. Where scalability is not a concern,
a combination approach is ideal.

• (Q2) We showed with our large-scale experiment that
over 4 years after the conception of the attack, and 2
years after the experiments in “Cached and Confused,”
WCD is still distressingly pervasive. This aligns with the
popularity of the attack on bug bounty platforms – and
likely miscreant activity that goes unnoticed.

• (Q3) Our experiments and case studies illustrated that
there is an abundance of sensitive security tokens present
on publicly accessible pages, which can be stolen via

WCD to bypass standard defenses and facilitate real-
life attacks. Many websites that leak such tokens are
evidently impacted by WCD in more than one way, ex-
posing flaws that lead to further attacks and leaks. These
observations, combined with the significant performance
advantage of DE over CC, suggest that focusing on per-
sonal information sources and sinks for WCD detection
is not the most effective detection strategy, even when
testing individual websites in a controlled setting.

Our findings sufficiently address the research questions
we set out to explore, and we contribute novel insights into
the scale and impact of the problem. The methodology we
present will help website owners test their own systems for
vulnerabilities, and researchers to run experiments with ambi-
tious scopes. However, another implication of this work is that
attackers, too, can quickly identify vulnerabilities en masse.
WCD, and web cache attacks in general, require immediate
attention from the security community for a robust solution.

Before we conclude, we reiterate that WCD is a system
problem. Individual components such as the clients, web
servers, proxy services, or CDN providers are not necessarily
faulty in isolation; their complex interactions give rise to un-
expected and dangerous caching decisions. One corollary of
these circumstances is that our findings do not implicate the
developers and operators of these individual components. But,
perhaps the more critical take away is that website owners can-
not rely on traditional vulnerability management and software
testing processes to eradicate these vulnerabilities – there is
often no unit test to run, no signature to check, no CVE to
track, and no patch to deploy. It is not yet clear whether map-
ping complex traffic flows and analyzing them holistically
for cache attacks is feasible, or even possible. That remains
an open challenge for the security research community, and
in light of the resurging popularity of web cache attacks, we
believe it has already become a pressing line of investigation.

In the meantime, our work presents one key takeaway for
website owners who are inevitably getting more familiar with
the escalating web cache attacks: CDNs and caching proxies
are powerful technologies in an already complex ecosystem.
Simple caching rules can have far-reaching effects, and mak-
ing assumptions about the cacheability of objects based on
their public exposure to the Internet alone is, evidently, unsafe.
Website owners should carefully consider (and test) the secu-
rity implications of changes to their caching infrastructure,
and exercise caution when using blanket rules such as those
that cache all objects served from a given endpoint or all files
with a given extension.

Acknowledgments. We thank our fellow researcher Bahruz
Jabiyev for his valuable input, and our shepherd Stefano
Calzavara for championing our paper. This work was sup-
ported by the EU H2020-SU-ICT-03-2018 Project No.
830929 CyberSec4Europe, the National Science Foundation
grant CNS- 1703454, and by Secure Business Austria.

13

References

[1] Akamai Developer. EdgeWorkers. https:
//developer.akamai.com/akamai-edgeworkers-
overview.

[2] Akamai Technologies. Facts & Figures.
https://www.akamai.com/us/en/about/facts-
figures.jsp.

[3] Amazon Web Services (AWS). HTTP Desync
Guardian, 2020. https://github.com/aws/http-
desync-guardian.

[4] Apache HTTP Server Project. Caching Guide. https:
//httpd.apache.org/docs/2.4/caching.html.

[5] BuiltWith. BuiltWith Technology Lookup.
https://trends.builtwith.com/CDN/Content-
Delivery-Network.

[6] Jianjun Chen, Jian Jiang, Haixin Duan, Nicholas Weaver,
Tao Wan, and Vern Paxson. Host of Troubles: Multi-
ple Host Ambiguities in HTTP Implementations. In
ACM Conference on Computer and Communications
Security, 2016.

[7] Jianjun Chen, Jian Jiang, Xiaofeng Zheng, Haixin
Duan, Jinjin Liang, Kang Li, Tao Wan, and Vern Pax-
son. Forwarding-Loop Attacks in Content Delivery
Networks. In The Network and Distributed System
Security Symposium, 2016.

[8] Cloudflare. Creating Cache Keys. https:
//support.cloudflare.com/hc/en-us/articles/
115003206852s.

[9] Cloudflare. The Cloudflare Global Anycast Network.
https://www.cloudflare.com/network/.

[10] Cloudflare. Understanding Cloudflare’s CDN,
2021. https://support.cloudflare.com/hc/
en-us/articles/200172516-Understanding-
Cloudflare-s-CDN.

[11] Cloudflare Docs. Cloudflare Workers Documenta-
tion, 2021. https://developers.cloudflare.com/
workers/.

[12] Akamai Documentation. Caching, 2021.
https://learn.akamai.com/en-us/webhelp/
api-gateway/api-gateway-user-guide/GUID-
B717E657-4C07-4B76-934A-36F1C40F91AE.html.

[13] Fastly Documentation. Configuring Caching,
2020. https://docs.fastly.com/en/guides/
configuring-caching.

[14] Evan Custodio. Smuggler, 2020. https://
github.com/defparam/smuggler.

[15] Fastly. Compute@Edge. https://www.fastly.com/
products/edge-compute/use-cases.

[16] Fastly. Fastly Developer Hub – X-Cache.
https://developer.fastly.com/reference/
http-headers/X-Cache/.

[17] Fastly. Fastly Network Map. https:
//www.fastly.com/network-map.

[18] Roy T. Fielding, Mark Nottingham, and Julian F.
Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Caching. IETF – RFC 7234, 2014. https://www.rfc-
editor.org/info/rfc7234.

[19] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,
and Vern Paxson. Blocking-Resistant Communica-
tion Through Domain Fronting. In Privacy Enhancing
Technologies, 2015.

[20] Omer Gil. Web Cache Deception Attack. Black
Hat USA, 2017. https://www.blackhat.com/us-17/
briefings.html#web-cache-deception-attack.

[21] Omer Gil. Web Cache Deception Attack, 2017.
https://omergil.blogspot.com/2017/02/web-
cache-deception-attack.html.

[22] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao
Zhang, Haixin Duan, Tao Wan, Jian Jiang, Shuang
Hao, and Yaoqi Jia. Abusing CDNs for Fun and
Profit: Security Issues in CDNs’ Origin Validation. In
IEEE International Symposium on Reliable Distributed
Systems, 2018.

[23] Run Guo, Weizhong Li, Baojun Liu, Shuang Hao, Jia
Zhang, Haixin Duan, Kaiwen Sheng, Jianjun Chen, and
Ying Liu. CDN Judo: Breaking the CDN DoS Protection
with Itself. In The Network and Distributed System
Security Symposium, 2021.

[24] Shuai Hao, Yubao Zhang, Haining Wang, and Ange-
los Stavrou. End-Users Get Maneuvered: Empirical
Analysis of Redirection Hijacking in Content Delivery
Networks. In USENIX Security Symposium, 2018.

[25] John Holowczak and Amir Houmansadr. CacheBrowser:
Bypassing Chinese Censorship Without Proxies Using
Cached Content. In ACM Conference on Computer and
Communications Security, 2015.

[26] Arbaz Hussain. Auto Web Cache Deception Tool,
2017. https://medium.com/@arbazhussain/auto-
web-cache-deception-tool-2b995c1d1ab2.

14

https://developer.akamai.com/akamai-edgeworkers-overview
https://developer.akamai.com/akamai-edgeworkers-overview
https://developer.akamai.com/akamai-edgeworkers-overview
https://www.akamai.com/us/en/about/facts-figures.jsp
https://www.akamai.com/us/en/about/facts-figures.jsp
https://github.com/aws/http-desync-guardian
https://github.com/aws/http-desync-guardian
https://httpd.apache.org/docs/2.4/caching.html
https://httpd.apache.org/docs/2.4/caching.html
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://support.cloudflare.com/hc/en-us/articles/115003206852s
https://support.cloudflare.com/hc/en-us/articles/115003206852s
https://support.cloudflare.com/hc/en-us/articles/115003206852s
https://www.cloudflare.com/network/
https://support.cloudflare.com/hc/en-us/articles/200172516-Understanding-Cloudflare-s-CDN
https://support.cloudflare.com/hc/en-us/articles/200172516-Understanding-Cloudflare-s-CDN
https://support.cloudflare.com/hc/en-us/articles/200172516-Understanding-Cloudflare-s-CDN
https://developers.cloudflare.com/workers/
https://developers.cloudflare.com/workers/
https://learn.akamai.com/en-us/webhelp/api-gateway/api-gateway-user-guide/GUID-B717E657-4C07-4B76-934A-36F1C40F91AE.html
https://learn.akamai.com/en-us/webhelp/api-gateway/api-gateway-user-guide/GUID-B717E657-4C07-4B76-934A-36F1C40F91AE.html
https://learn.akamai.com/en-us/webhelp/api-gateway/api-gateway-user-guide/GUID-B717E657-4C07-4B76-934A-36F1C40F91AE.html
https://docs.fastly.com/en/guides/configuring-caching
https://docs.fastly.com/en/guides/configuring-caching
https://github.com/defparam/smuggler
https://github.com/defparam/smuggler
https://www.fastly.com/products/edge-compute/use-cases
https://www.fastly.com/products/edge-compute/use-cases
https://developer.fastly.com/reference/http-headers/X-Cache/
https://developer.fastly.com/reference/http-headers/X-Cache/
https://www.fastly.com/network-map
https://www.fastly.com/network-map
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://www.blackhat.com/us-17/briefings.html#web-cache-deception-attack
https://www.blackhat.com/us-17/briefings.html#web-cache-deception-attack
https://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
https://omergil.blogspot.com/2017/02/web-cache-deception-attack.html
https://medium.com/@arbazhussain/auto-web-cache-deception-tool-2b995c1d1ab2
https://medium.com/@arbazhussain/auto-web-cache-deception-tool-2b995c1d1ab2

[27] Bahruz Jabiyev, Steven Sprecher, Kaan Onarlioglu, and
Engin Kirda. T-Reqs: HTTP Request Smuggling with
Differential Fuzzing. In ACM Conference on Computer
and Communications Security, 2021.

[28] Lin Jin, Shuai Hao, Haining Wang, and Chase Cot-
ton. Your Remnant Tells Secret: Residual Resolu-
tion in DDoS Protection Services. In IEEE/IFIP
International Conference on Dependable Systems and
Networks, 2018.

[29] James Kettle. Practical Web Cache Poison-
ing. PortSwigger Web Security Blog, 2018.
https://portswigger.net/blog/practical-
web-cache-poisoning.

[30] James Kettle. HTTP Desync Attacks: Request
Smuggling Reborn. PortSwigger Web Security
Blog, 2019. https://portswigger.net/blog/http-
desync-attacks-request-smuggling-reborn.

[31] James Kettle. Web Cache Entanglement: Novel
Pathways to Poisoning. PortSwigger Research,
2020. https://portswigger.net/research/web-
cache-entanglement.

[32] James Kettle. HTTP/2: The Sequel is Al-
ways Worse. Black Hat USA, 2021. https:
//www.blackhat.com/us-21/briefings/schedule/
#http2-the-sequel-is-always-worse-22668.

[33] Amit Klein. HTTP Request Smuggling in
2020 – New Variants, New Defenses and New
Challenge. Black Hat USA, 2020. https:
//www.blackhat.com/us-20/briefings/schedule/
#http-request-smuggling-in---new-variants-
new-defenses-and-new-challenges-20019.

[34] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad
Karami, Michael Bailey, Damon McCoy, Stefan Savage,
and Vern Paxson. You’ve Got Vulnerability: Explor-
ing Effective Vulnerability Notifications. In USENIX
Security Symposium, 2016.

[35] Chaim Linhart, Amit Klein, Ronen Heled, and Steve
Orrin. HTTP Request Smuggling. Watchfire,
2005. https://www.cgisecurity.com/lib/HTTP-
Request-Smuggling.pdf.

[36] Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu,
Bruno Crispo, Engin Kirda, and William Robertson.
Cached and Confused: Web Cache Deception in the
Wild. In USENIX Security Symposium, 2020.

[37] NGINX. NGINX Content Caching. https:
//docs.nginx.com/nginx/admin-guide/content-
cache/content-caching/.

[38] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Feder-
rath. Your Cache Has Fallen: Cache-Poisoned Denial-
of-Service Attack. In ACM Conference on Computer
and Communications Security, 2019.

[39] PortSwigger. HTTP Request Smuggler, 2019.
https://github.com/PortSwigger/http-
request-smuggler.

[40] Apache HTTP Server Project. Apache Mod-
ule mod_cache – CacheHeader Directive.
https://httpd.apache.org/docs/2.4/mod/
mod_cache.html#cacheheader.

[41] Johan Snyman. Airachnid: Web Cache Deception
Burp Extender. Trustwave – SpiderLabs Blog,
2017. https://www.trustwave.com/Resources/
SpiderLabs-Blog/Airachnid--Web-Cache-
Deception-Burp-Extender/.

[42] Squid. Squid: Optimising Web Delivery. http://
www.squid-cache.org/.

[43] Ben Stock, Giancarlo Pellegrino, Frank Li, Michael
Backes, and Christian Rossow. Didn’t You Hear Me? —
Towards More Successful Web Vulnerability Notifica-
tions. In The Network and Distributed System Security
Symposium, 2018.

[44] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Mar-
tin Johns, and Michael Backes. Hey, You Have a Prob-
lem: On the Feasibility of Large-Scale Web Vulnera-
bility Notification. In USENIX Security Symposium,
2016.

[45] David Strom. What is Magecart? How this hacker
group steals payment card data. CSO Online, 2019.
https://www.csoonline.com/article/3400381/
what-is-magecart-how-this-hacker-group-
steals-payment-card-data.html.

[46] Avinash Sudhodanan, Roberto Carbone, Luca Com-
pagna, Nicolas Dolgin, Alessandro Armando, and Um-
berto Morelli. Large-Scale Analysis & Detection of
Authentication Cross-Site Request Forgeries. In IEEE
European Symposium on Security and Privacy, 2017.

[47] Sipat Triukose, Zakaria Al-Qudah, and Michael Rabi-
novich. Content Delivery Networks: Protection or
Threat? In European Symposium on Research in
Computer Security, 2009.

[48] Varnish. Varnish HTTP Cache. https://varnish-
cache.org/.

15

https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/web-cache-entanglement
https://portswigger.net/research/web-cache-entanglement
https://www.blackhat.com/us-21/briefings/schedule/#http2-the-sequel-is-always-worse-22668
https://www.blackhat.com/us-21/briefings/schedule/#http2-the-sequel-is-always-worse-22668
https://www.blackhat.com/us-21/briefings/schedule/#http2-the-sequel-is-always-worse-22668
https://www.blackhat.com/us-20/briefings/schedule/#http-request-smuggling-in---new-variants-new-defenses-and-new-challenges-20019
https://www.blackhat.com/us-20/briefings/schedule/#http-request-smuggling-in---new-variants-new-defenses-and-new-challenges-20019
https://www.blackhat.com/us-20/briefings/schedule/#http-request-smuggling-in---new-variants-new-defenses-and-new-challenges-20019
https://www.blackhat.com/us-20/briefings/schedule/#http-request-smuggling-in---new-variants-new-defenses-and-new-challenges-20019
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://docs.nginx.com/nginx/admin-guide/content-cache/content-caching/
https://docs.nginx.com/nginx/admin-guide/content-cache/content-caching/
https://docs.nginx.com/nginx/admin-guide/content-cache/content-caching/
https://github.com/PortSwigger/http-request-smuggler
https://github.com/PortSwigger/http-request-smuggler
https://httpd.apache.org/docs/2.4/mod/mod_cache.html#cacheheader
https://httpd.apache.org/docs/2.4/mod/mod_cache.html#cacheheader
https://www.trustwave.com/Resources/SpiderLabs-Blog/Airachnid--Web-Cache-Deception-Burp-Extender/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Airachnid--Web-Cache-Deception-Burp-Extender/
https://www.trustwave.com/Resources/SpiderLabs-Blog/Airachnid--Web-Cache-Deception-Burp-Extender/
http://www.squid-cache.org/
http://www.squid-cache.org/
https://www.csoonline.com/article/3400381/what-is-magecart-how-this-hacker-group-steals-payment-card-data.html
https://www.csoonline.com/article/3400381/what-is-magecart-how-this-hacker-group-steals-payment-card-data.html
https://www.csoonline.com/article/3400381/what-is-magecart-how-this-hacker-group-steals-payment-card-data.html
https://varnish-cache.org/
https://varnish-cache.org/

[49] Thomas Vissers, Tom Van Goethem, Wouter Joosen,
and Nick Nikiforakis. Maneuvering Around Clouds:
Bypassing Cloud-based Security Providers. In
ACM Conference on Computer and Communications
Security, 2015.

[50] World Wide Web Consortium (W3C). Cool URIs
don’t change, 1998. https://www.w3.org/Provider/
Style/URI.html.

[51] Hadi Zolfaghari and Amir Houmansadr. Practi-
cal Censorship Evasion Leveraging Content Delivery
Networks. In ACM Conference on Computer and
Communications Security, 2016.

A Path Confusion Techniques

Table 5 presents examples for each path confusion technique
we use when crafting the attack URLs in our comparative
evaluation, and a breakdown of the findings for each. Table 6

shows a similar summary for the large-scale experiment.
Path Parameter refers to the original WCD technique pro-

posed by Omer Gil, and the remaining 4 encoding techniques
listed in the first group of rows were presented by Mirhei-
dari et al. in their paper “Cached and Confused”. The second
group contains 7 additional path confusion techniques we
propose here. While there are overlaps between the websites
each technique can exploit, combining all 12 greatly increases
the chances of exposing WCD vulnerabilities.

Disclaimer

The authors Seyed Ali Mirheidari and Kaan Onarlioglu are
affiliated with Splunk Inc. and Akamai Technologies Inc.,
respectively, at the time of this publication. However, this
research is not sponsored or carried out by either company.
The work and results we present in this paper do not use
any internal or proprietary company information, or any such
information pertaining to the companies’ customers.

16

https://www.w3.org/Provider/Style/URI.html
https://www.w3.org/Provider/Style/URI.html

Table 5: The number of vulnerable websites detected via each path confusion variation over 404 targets in our comparative
experiment. The middle rule separates the previously known variations above from the new ones we introduce in this research
below. Percentages are calculated over the total number of true positives for each methodology.

Path Confusion Technique Example CC DEauth DE

Path Parameter example.com/profile/not_a_file.css 13 (72.22%) 63 (54.78%) 62 (59.62%)
Encoded Newline example.com/profile%0Anot_a_file.css 7 (38.89%) 90 (78.26%) 90 (86.54%)
Encoded Question Mark example.com/profile%3Fname=valnot_a_file.css 8 (44.44%) 89 (77.39%) 87 (83.65%)
Encoded Semicolon example.com/profile%3Bnot_a_file.css 9 (50.00%) 90 (78.26%) 90 (86.54%)
Encoded Sharp example.com/profile%23not_a_file.css 9 (50.00%) 89 (77.39%) 88 (84.62%)

Encoded Slash example.com/profile%2Fnot_a_file.css 8 (44.44%) 94 (81.74%) 96 (92.31%)
Double Encoded Newline example.com/profile%25%30%41not_a_file.css 7 (38.89%) 90 (78.26%) 87 (83.65%)
Double Encoded Null example.com/profile%25%30%30not_a_file.css 6 (33.33%) 87 (75.65%) 85 (81.73%)
Double Encoded Question Mark example.com/profile%25%33%46not_a_file.css 8 (44.44%) 90 (78.26%) 86 (82.69%)
Double Encoded Semicolon example.com/profile%25%33%42not_a_file.css 9 (50.00%) 89 (77.39%) 84 (80.77%)
Double Encoded Sharp example.com/profile%25%32%33not_a_file.css 8 (44.44%) 89 (77.39%) 86 (82.69%)
Double Encoded Slash example.com/profile%25%32%46not_a_file.css 7 (38.89%) 84 (73.04%) 88 (84.62%)

Table 6: The number of vulnerable websites detected via each path confusion variation in the large-scale measurement over
the Alexa Top 10K. The middle rule separates the previously known variations above from the new ones we introduce in this
research below. Percentages are calculated over the total number of findings.

Path Confusion Technique Example DE

Path Parameter example.com/profile/not_a_file.css 618 (52.02%)
Encoded Newline example.com/profile%0Anot_a_file.css 528 (44.44%)
Encoded Question Mark example.com/profile%3Fname=valnot_a_file.css 801 (67.42%)
Encoded Semicolon example.com/profile%3Bnot_a_file.css 863 (72.64%)
Encoded Sharp example.com/profile%23not_a_file.css 526 (44.28%)

Encoded Slash example.com/profile%2Fnot_a_file.css 559 (47.05%)
Double Encoded Newline example.com/profile%25%30%41not_a_file.css 383 (32.24%)
Double Encoded Null example.com/profile%25%30%30not_a_file.css 349 (29.38%)
Double Encoded Question Mark example.com/profile%25%33%46not_a_file.css 387 (32.58%)
Double Encoded Semicolon example.com/profile%25%33%42not_a_file.css 402 (33.84%)
Double Encoded Sharp example.com/profile%25%32%33not_a_file.css 386 (32.49%)
Double Encoded Slash example.com/profile%25%32%46not_a_file.css 365 (30.72%)

17

	Introduction
	Background & Research Goals
	Web Caches
	Web Cache Deception
	Cached and Confused
	Our Motivation & Goals
	Other Related Work

	Methodology
	Overview
	Cache Header Heuristics
	Interpreting the Results

	Comparative Evaluation
	DE with Authentication
	The Experiment
	Results
	Summary

	Large-Scale Experiment with DE
	The Experiment
	Results

	Security Impact & Case Studies
	Bounty Hunting with WCD
	Ethical Considerations
	Discussion & Conclusion
	Path Confusion Techniques

