
OAuth 2.0 Redirect URI Validation Falls Short, Literally
Tommaso Innocenti
Northeastern University

Boston, MA, USA

Matteo Golinelli
University of Trento

Trento, Italy

Kaan Onarlioglu
Akamai Technologies

and Northeastern University∗
Cambridge, MA, USA

Ali Mirheidari
Independent Researcher

Austin, TX, USA

Bruno Crispo
University of Trento

Trento, Italy

Engin Kirda
Northeastern University

Boston, MA, USA

ABSTRACT
OAuth 2.0 requires a complex redirection trail between websites
and Identity Providers (IdPs). In particular, the "redirect URI" pa-
rameter included in the popular Authorization Grant Code flow
governs the callback endpoint that users are routed to, together
with their security tokens. The protocol specification, therefore,
includes guidelines on protecting the integrity of the redirect URI.

In this work, we analyze the OAuth 2.0 specification in light
of modern systems-centric attacks and reveal that the prescribed
redirect URI validation guidance exposes IdPs to path confusion
and parameter pollution attacks. Based on this observation, we
propose novel attack techniques and experiment with 16 popular
IdPs, empirically verifying that the OAuth 2.0 security guidance
is under-specified. We finally present end-to-end attack scenarios
that combine our attack techniques with common web application
vulnerabilities, ultimately resulting in a complete compromise of
the secure delegated access that OAuth 2.0 promises.

KEYWORDS
OAuth 2.0, redirect URI, path confusion, parameter pollution, ac-
count takeover

ACM Reference Format:
Tommaso Innocenti, Matteo Golinelli, Kaan Onarlioglu, Ali Mirheidari,
Bruno Crispo, and Engin Kirda. 2023. OAuth 2.0 Redirect URI Validation
Falls Short, Literally. In Annual Computer Security Applications Con-
ference (ACSAC ’23), December 4–8, 2023, Austin, TX, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3627106.3627140

1 INTRODUCTION
OAuth 2.0 is an industry-standard delegated access protocol allow-
ing Internet users to grant a web application access to their data
hosted on a third-party server. The most widely-used mechanism
provided by OAuth 2.0, the Authorization Code Grant flow, involves

∗The work described in this paper was performed solely at Northeastern University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’23, December 4–8, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0886-2/23/12. . . $15.00
https://doi.org/10.1145/3627106.3627140

multiple interactions between a Client application requesting ac-
cess to external data and an Identity Provider (IdP)1, where sensitive
parameters need to be securely transferred and processed by each
party. As a result, security analysis of OAuth 2.0 flows is an active
research area, with a steady stream of practical vulnerabilities being
discovered and mitigated (e.g., [14, 22, 27, 33]).

Notably, after the Client forwards a user’s browser to the IdP
and the user authorizes the data access, the IdP must redirect the
browser back to a callback endpoint on the Client site. The Client
communicates this endpoint to the IdP via the redirect URI pa-
rameter defined in the protocol. The request sent to this callback
endpoint contains security tokens, so ensuring the integrity of
redirect URI is paramount. Consequently, Clients must regis-
ter their callback endpoint with the IdP during their setup. IdPs
must validate during each OAuth 2.0 flow that the supplied redirect
URI matches that registered endpoint. Unsurprisingly, exploiting
OAuth 2.0 flows by abusing the redirect URI parameter has been
heavily explored, and security guidelines integrated into the proto-
col specification [16, 17].

In this paper, we revisit redirect URI abuse in light of the
lessons learned from emerging systems-centric web attacks, where
vulnerabilities stem from the discrepancies between how different
system components parse the same URI (e.g., [1, 18]). In particular,
we observe that the RFC guidance available for Clients and IdPs
narrowly focuses on protecting the integrity of the domain name
included in redirect URI alone, but not the entire URI. We hypoth-
esize that the RFCs’ URI validation guidance is hazardously under-
specified. We then explore novel mechanisms to attack OAuth 2.0
flows by abusing redirect URI path components and query string
arguments.

Our experiments with 16 major IdPs show that they expose
vulnerabilities due to insufficient validation of redirect URI, even
under the charitable assumption that they follow the relevant RFCs
flawlessly. Specifically, 6 IdPs are vulnerable to path confusion,
and 10 are vulnerable to parameter pollution attacks. Using these
vulnerabilities as novel exploit building blocks and combining them
with other Client and IdP vulnerabilities, we show that sensitive
OAuth 2.0 parameter leakage leading to complete account takeover
attacks is viable. Ultimately, we confirm that the existing security
guidance is insufficient and that a passing score from compliance
1We note that Identity Provider is not strictly OAuth 2.0 terminology, roughly replacing
the components Authorization Server and Resource Server defined in the respective
RFC. Nevertheless, the term IdP is often used in literature to simplify the discussion
and better capture the common model where delegated authorization and identity
services are combined in a single provider service. In this paper, we also use this
simplified terminology for brevity.

1

https://orcid.org/0000-0003-0247-806X
https://orcid.org/0000-0002-8743-0825
https://orcid.org/0009-0003-7832-5884
https://orcid.org/0000-0003-0159-5037
https://orcid.org/0000-0002-1252-8465
https://orcid.org/0000-0001-9988-6873
https://doi.org/10.1145/3627106.3627140
https://doi.org/10.1145/3627106.3627140

ACSAC ’23, December 4–8, 2023, Austin, TX, USA Innocenti, et al.

check frameworks (e.g., the recently published OAuch [25]) does
not necessarily reflect good security.

Following a coordinated disclosure process, we have shared our
findings with the impacted parties. We have also identified the
parts of the OAuth 2.0 specification where redirect URI validation
requirements are under-specified, leading to the vulnerabilities we
have discovered and made recommendations to the OAuthWorking
Group for improvements to the protocol specification.

We summarize the contributions of this research below.
• We explore path confusion and parameter pollution in the
context of OAuth 2.0.

• We run experiments with 16 IdPs, confirming that insuffi-
cient redirect URI validation issues impact them.

• We discuss practical attack scenarios and empirically demon-
strate how redirect URI validation issues can be exploited
for account takeover attacks.

• We demonstrate that the existing OAuth 2.0 security guid-
ance is insufficient, and make concrete recommendations to
improve the security of OAuth 2.0 Clients and their users.

Availability. We make the tools described in this work publicly
available2.

Ethics.We have conducted all experiments, exploit proofs-of-
concepts, and disclosure of our findings in an ethical manner. For
details, please see Section 7.

2 BACKGROUND
2.1 OAuth 2.0
OAuth 2.0 is a secure delegated access framework that enables Re-
source Owners to grant a Client access to their data hosted on a
third-party Resource Server. The authorization is granted via inter-
actions with an Authorization Server in lieu of sharing the Resource
Owner’s credentials with the Client. OAuth 2.0 defines four grant
types, Authorization Code Grant being a common one suitable for
environments where the Client can interact with the Resource
Owner’s user agent [12]. This grant flow enables the common web
application deployment model where Internet users (i.e., Resource
Owner) can enable web applications (i.e., Client) access to their
external data by authenticating to an Identity Provider (i.e., often
a combination of federated authentication services, Authorization
Server, and Resource Server).

The Client must first establish a trust relationship with the Iden-
tity Provider (IdP) by registering its application. This process in-
cludes setting up a callback endpoint called redirect URI. In turn,
the IdP issues a unique client ID and client secret to the
Client. We summarize the rest of the authorization code grant flow
in Figure 1 and describe each step below.

Authorization Process. (1) The flow starts when the user visit-
ing the Client site asks to authenticate with a specific IdP, and (2)
the Client redirects the user’s browser to the IdP login endpoint.
(3) This request to the IdP is called the Authorization Request and it
commonly includes the following parameters: i) response type
= code, specifying the authorization code grant type, ii) the previ-
ously issued client ID, a public Client identifier, iii) state, used
as a Cross-Site Request Forgery (CSRF) defense, iv) redirect URI,

2https://github.com/innotommy/OAuthpaper-code

used to redirect the browser back to the Client application after the
user has granted or denied authorization.

(4) Once the browser is redirected to the IdP, the user authenti-
cates on the IdP using their credentials and authorizes the Client to
access their data. During this step, the IdP validates the parameters
included in the Authorization Request. In particular, redirect URI
is validated against the one Client provided during their registra-
tion. (5) If the validation succeeds, the IdP redirects the browser
back to the Client endpoint specified in redirect URI. (6) The re-
sulting Authorization Response includes a fresh authorization code
(i.e., code) and the earlier state. The Client validates the state
bound to the user’s session, ensuring there is no CSRF attack.

Redeem Process. The code does not directly grant access to
the user’s resources. (7) The Client instead uses it to redeem an
access token by making an Access Token Request to the IdP. This
request includes the following parameters: i) client ID, ii) grant
type = authorization_code, iii) client secret, iv) the code
received in the Authorization Response, and v) the same redirect
URI used in the Authorization Request. Upon receiving this, the IdP
authenticates the Client using client secret, verifies that code
was issued to this Client and was not used before, and checks that
redirect URI is identical to the one included in the Authorization
Request. (8) If all checks succeed, the IdP issues an access token
to the Client. Notably, the same code cannot be used again.

Data Access. Finally, (9) the Client can access the user’s pro-
tected resources with access token, where the IdP must verify
that the token has not expired.

2.2 Related Work
OAuth 2.0 comes at the cost of a complex redirection trail between
all parties involved in the protocol. The data flows must be secured
in flight, and sensitive parameters validated at each endpoint.

Researchers began investigating the protocol from the early days
using formal methods [6, 24]. This research culminated in the work
of Fett et al., which identified multiple protocol-level vulnerabilities
such as IdP Mix-Up and 307 Redirect [7].

redirect URI is a natural target for abuse, and researchers
have explored ways to redirect users to malicious domains [22].
Consequently, in 2017, the first draft of the OAuth 2.0 Security
Best Current Practice formally addressed redirect URI valida-
tion requirements [16]. However, as future work demonstrated,
this validation is insufficient, and abusing the discrepancies in URI
parsers still makes it possible to hijack OAuth 2.0 flows [33]. Re-
cently, OAuch presented a framework to verify the implementation
correctness of IdPs, including validating redirect URI [25]. Only
34% of IdPs were shown to perform a correct validation.

With OAuth 2.0’s sustained adoption, researchers have also dis-
covered a flood of Client-side implementation flaws [9, 20, 31, 34]. In
particular, Clients’ mishandling of state has led to widespread Lo-
gin CSRF vulnerabilities [4, 29]. Even when IdPs provided the Client
developers with SDKs, implicit security assumptions and poor doc-
umentation resulted in continued implementation issues [32]. Simi-
larly, recent research demonstrated that the complexity of support-
ing both SSO login protocols and traditional authenticationmethods

2

OAuth 2.0 Redirect URI Validation Falls Short, Literally ACSAC ’23, December 4–8, 2023, Austin, TX, USA

Resource Owner

1) Client Application Access

2) Redirection to IdP Login 3) Authorization Request

[response_type=code, client_id,

state, redirect_uri]

5) Redirection to Client Callback

8) Access Token Response

9) Protected Resource Requests

10) Protected Resource Response

 [code, state]

Redeem

Process

6) Authorization Response

Parameter
Validation

 [grant_type=authorization_code, client_id, client_secret, code, redirect_uri]

User Agent
(Web Browser)

 [access_token]

Client

Data Access

4) User Authentication

7) Access Token Request

Identity
Provider

Authorization

Process

 [access_token]

 [Data]

Access Token
Validation

State

Validation

Parameter
Validation

Figure 1: OAuth 2.0 Authorization Code Grant Flow.

in a Client, with intermingled paths, can lead to new classes of at-
tacks where an attacker can pre-hijack a victim’s account before
the victim interacts with the Client [8, 30].

A further OAuth 2.0 integration challenge is the security of
the Client endpoint. As the RFC spells out, including untrusted
third-party scripts in Client endpoints that have access to sen-
sitive OAuth 2.0 tokens is dangerous [12]. As demonstrated by
Frans Rosén and selected as the top hacking technique in 2023 by
PortSwigger, attacks abusing such token leaks are viable [3, 27].
However, this attack vector has largely been ignored by the aca-
demic research community so far.

Finally, research has looked at ways to address OAuth 2.0 vul-
nerabilities on the browser side, for example, by using browser
extensions to upgrade network connections to HTTPS [5, 15].

We present novel techniques to abuse redirect URI, beyond
what is covered in previous work, and describe how attackers can
escalate those to complex yet practical end-to-end attacks when
combined with common vulnerabilities on Client sites and IdPs.
Our contributions are due to fundamental gaps in the OAuth 2.0
specification, undetected by cutting-edge tools like OAuch.

3 RESEARCH STATEMENT
3.1 Motivation
As evidenced by the OAuth 2.0 literature we covered, redirect URI
has long been recognized as a lucrative abuse target by researchers
and miscreants alike. Presumably anticipating these security is-
sues, the authors of the OAuth 2.0 protocol specification and threat
model RFCs have also extensively covered redirect URI attacks
and explicitly called out the necessity to validate that a supplied
redirect URI matches the callback endpoint that was registered
during Client setup [11, 12, 17]. Quoting the relevant sections:

RFC 6749 Section 3.1.2.3 The authorization server
MUST compare the two URIs using simple string com-
parison as defined in RFC 3986 Section 6.2.1.

RFC 3986 Section 6.2.1 Testing strings for equality
is normally based on pair comparison of the charac-
ters that make up the strings, starting from the first
and proceeding until both strings are exhausted, and all
characters are found to be equal, until a pair of char-
acters compares unequal, or until one of the strings is
exhausted before the other.

This redirect URI validation strategy describes three stopping
conditions; however, it does not mandate a validation success or fail-
ure outcome for these conditions. In particular, the final condition
where two URIs may have a matching prefix, but overall different
lengths, is not expressly disallowed. Should IdPs interpret this am-
biguity as an intentional flexibility granted to them (e.g., to support
dynamic path components or query parameters in redirect URI)
or otherwise inadvertently allow a non-exact string match, there
are significant security implications: While this validation scheme
prevents tampering with the host or domain name included in a
redirect URI, it falls short of detecting potentially malicious addi-
tions to, deletions from, and modifications to the path components
and query string that follow. The security community has recently
seen a surge of attacks that utilize such path confusion techniques,
i.e., tricks that abuse URI parsing discrepancies within complex sys-
tem interactions (e.g., [1, 18]). We hypothesize that redirect URI
can too be abused by path confusion due to insufficient validation.

We next observe that RFC 6749 allows query strings in redirect
URI and further prescribes that they be retained during the pro-
tocol flow. The RFC acknowledges that malicious injections into
redirect URI parameters are a threat and recommends that end-
points perform validation and/or sanitization on sensitive values.
Quoting the relevant sections:

RFC 6749 Section 3.1 The endpoint URI MAY include
an "application/x-www-form-urlencoded" formatted (per
Appendix B) query component (RFC 3986 Section 3.4),
which MUST be retained when adding additional query
parameters.

3

ACSAC ’23, December 4–8, 2023, Austin, TX, USA Innocenti, et al.

RFC 6749 Section 10.14 A code injection attack occurs
when an input or otherwise external variable is used
by an application unsanitized and causes modification
to the application logic. This may allow an attacker to
access the application device or its data, cause a denial
of service, or introduce a wide range of malicious side-
effects. The authorization server and Client MUST sani-
tize (and validate when possible) any value received–in
particular, the value of the "state" and "redirect_uri"
parameters.

While this language calls out a potential attack vector via abuse
of query strings, it lacks prescriptive instructions on the appropri-
ate input validation or attack prevention steps. When combined
with the requirement (i.e., MUST) that additional parameters be
retained, the RFC leaves redirect URI open to parameter pollution
attacks, where an attacker injects duplicates of security-sensitive
parameters in a query string to, once again, abuse parsing discrep-
ancies between different system components that process the same
URI [2]. Therefore, we hypothesize that OAuth 2.0 flows can be
attacked via parameter pollution in redirect URI. A quick survey
indicates that we are not alone in this second observation; in fact,
two security researchers Lauritz Holtmann and Youssef Sammouda
independently found specific evidence of parameter pollution in
OAuth 2.0, which further warrants a systematic exploration of this
issue [13, 28].

We stress that both of our hypotheses are valid under the ideal-
ized assumption that Clients and IdPs follow and implement the
OAuth 2.0 RFCs correctly.We do not rely on implementation bugs
but under-specified requirements.

3.2 Research Goals
In this work, we set out to experiment with popular IdPs and test
the two hypotheses mentioned earlier. We ultimately aim to answer
the following research questions.
(Q1) Is OAuth 2.0 vulnerable to path confusion attacks?
(Q2) Is OAuth 2.0 vulnerable to parameter pollution in security-

sensitive tokens?
(Q3) How can attackers use these techniques to enable end-to-end

attacks on real-life applications?
(Q4) How can we improve the OAuth 2.0 specification to address

these issues?
We tackle these questions in the rest of this work.

3.3 Threat Model
The threat model we assume in this work is that of a typical web
attacker, targeting a web application.

The Client is any web application that serves Internet users and
uses identity and access management services offered by an IdP via
OAuth 2.0. Internet users access the Client with user agents (e.g.,
a web browser) installed on any networked device. All networked
communications between these entities run over a secure channel,
such as a modern version of TLS, which guarantees cryptographic
confidentiality and integrity.

The attacker has identical privileges to regular Internet users.
They can access the Client web application with their legitimately

created authentication and authorization credentials. They can,
therefore, also interact with the IdP via OAuth 2.0 normally.

The attacker does not have man-in-the-middle capabilities or
the ability to interfere with secure communication channels. They
can, however, participate in OAuth 2.0 and maliciously interact
with protocol flows on their user agents, receiving messages and
responding to them with any data, just like any Resource Owner
could on their device. We further assume that the attacker can
utilize social engineering techniques to make their victim click on
malicious links.

All attacks involving unauthorized access to a victim’s data are
in the scope of our threat model. This includes tricking the victim
into accessing an attacker-controlled resource and leaking sensitive
data (e.g., a Login CSRF attack), or a more straightforward takeover
of the victim’s account by the attacker.

We stress that the novel abuse vectors we present in this paper
are building blocks for attacks, but they are not end-to-end exploits
on their own. Therefore, our threat model assumes that the targeted
Clients and IdPs may include other well-known web application
vulnerabilities. An attacker can then combine our new findings
with existing vulnerabilities to achieve severely damaging effects,
such as a complete account takeover that would otherwise not be
possible. We discuss these specific preconditions where relevant in
the rest of this paper.

4 BAD VALIDATION PART I:
PATH CONFUSION

To test our hypothesis that the OAuth 2.0 redirect URI val-
idation guidelines are insufficient and subsequently answer our
research question (Q1) (see Section 3.2), we design an experiment
that exercises popular IdPs with redirect URI parameters con-
taining path confusion payloads. We present our methodology and
results below.

4.1 Path Confusion Primer
Path confusion refers to a collection of techniques that involve
appending maliciously crafted path components to a URL. This
serves to confuse modern URL parsers designed to accommodate
complex URL rewriting and routing mechanisms, or otherwise
to induce discrepancies between multiple parsers in a complex
system. Path confusion has recently been used in various attack
contexts such as Web Cache Deception and Relative Path Overwrite
successfully, and the research community has been developing a
steady stream of new confusion techniques [1, 18, 19].

In this experiment, we aim to replace the legitimate redirect
URI parameter in OAuth 2.0 flows with path confusion payloads,
and subsequently determine which IdPs fail to detect this malicious
modification through validation and proceed with the protocol. The
impact of a successful attack is that the IdP redirects the victim’s
user agent to an unintended endpoint on the Client site.We will
explain how this capability translates to a practical attack
in the rest of the paper; in this experiment, however, our
immediate goal is to detect vulnerable IdPs and verify that
path confusion in OAuth 2.0 is possible.

We test each IdP with 20 distinct path confusion payloads com-
piled from the cited literature, shown in Figure 2. These variations

4

OAuth 2.0 Redirect URI Validation Falls Short, Literally ACSAC ’23, December 4–8, 2023, Austin, TX, USA

Client.com/callback/FAKEPATH
Client.com/callback %2FFAKEPATH
Client.com/callback /..%2FFAKEPATH
Client.com/callback /%2e%2e%2FFAKEPATH
Client.com/callback /..%252FFAKEPATH
Client.com/callback /%252e%252e%252FFAKEPATH

Client.com/callback/FAKEPATH /..
Client.com/callback %2FFAKEPATH %2F..
Client.com/callback %2FFAKEPATH %2F%2e%2e
Client.com/callback %252FFAKEPATH %252F..
Client.com/callback %252FFAKEPATH %252F%252e%252e

Client.com/callback/;/../../ FAKEPATH
Client.com/callback/%3B/../../ FAKEPATH
Client.com/callback/%3B%2F..%2F..%2FFAKEPATH
Client.com/callback/%3B%2F%2e%2e%2F%2F%2e%2eFAKEPATH
Client.com/callback/%253B%252F..%252F..%252FFAKEPATH

Client.com/callback/%0A%0D/../../ FAKEPATH
Client.com/callback/%0A%0D%2F..%2F..%2FFAKEPATH
Client.com/callback/%0A%0D%2F%2e%2e%2F%2F%2e%2eFAKEPATH
Client.com/callback/%250A%250D%252F..%252F..%252FFAKEPATH

Figure 2: Path confusion payloads used in the experiment.
"Client.com/callback/" represents the legitimate redirect end-
point, and the remaining components are malicious modi-
fications. The attacker’s goal is to redirect the victim to an
intended FAKEPATH endpoint on the Client site, and red
sections are confusion techniques including path traversal
tricks, encoded special characters, and layered encoding.

combine the basic payload with path traversal tricks, encoded spe-
cial characters, and multiple encoding layers to create increasingly
complex URLs that trigger parser quirks and validation flaws.

4.2 Methodology
Setup. We start with a setup phase that enables us to automate
OAuth 2.0 flows and redirect URI modifications for testing. We
seed our experiment with a collection of Client sites and crawl each
site in this dataset to identify their user authentication pages and
the IdPs they support. This is a two-step process. First, our detection
logic uses regular expressions and simple heuristics, looking for
keywords (e.g., login, sign-in, join) and HTML tags (e.g., input tags
of type password) in the page content to detect the login pages.
Next, we use a second layer of similar heuristics on these pages to
detect the presence of all HTML elements (e.g., buttons, hyperlinks)
that start an OAuth 2.0 flow (i.e., OAuth 2.0 triggers). Note that
a Client can support multiple IdPs; we detect and subsequently
experiment with all of them. For implementation details of these
heuristics, please see our publicly available source code.

At this stage, creating accounts with all identified IdPs is neces-
sary to perform an end-to-end flow with them for experimentation.
This is a manual effort where we create test accounts and provide
as account details (e.g., email address, user name) unique values
that we can later identify reflected on a Client callback page, which
would indicate the successful completion of OAuth 2.0.

Finally, we verify our findings by exercising the OAuth 2.0 trigger
we found on Client sites. Specifically, we use an OAuth 2.0 Player

tool we developed, which automatically drives a real browser to
start OAuth 2.0 from the Client site, authenticates to IdP using our
test accounts, and then lands back on the Client callback endpoint.
The tool verifies on the Client that all previously identified HTML
elements initiate the flow, on the IdP site that the landing page is the
IdP login page, and that the URL contains the necessary OAuth 2.0
parameters (e.g., redirect URI, state). We discard any OAuth 2.0
triggers that fail to pass this verification (e.g., in cases where our
detection heuristics did not work as expected), and we proceed to
the next phase of the experiment with the rest.

Data Collection. We once again exercise all OAuth 2.0 triggers
with the OAuth 2.0 Player, but this time also utilize a man-in-the-
middle proxy to intercept the flows and inject our path confusion
payloads into the redirect URI parameters in flight. We test ev-
ery flow separately with all 20 path confusion payloads shown in
Figure 2. We collect raw dumps of all network traffic, intercepting
proxy logs, browser screenshots at each step, and information re-
garding the presence of our unique test account identifiers on the
final Client callback page.

Vulnerability Detection. In this final phase, we analyze the
data collected in the previous step to determine which IdPs are
impacted by path confusion payloads, meaning they perform in-
sufficient redirect URI validation. More specifically, we flag IdPs
that did not terminate the protocol upon receiving a maliciously
modified redirect URI or otherwise sanitize the "FAKEPATH"
marker included in our attack payloads, but instead proceeded to
redirect the browser to a callback endpoint containing the same
"FAKEPATH" component (i.e., the Authorization Response URL
contains "FAKEPATH").

Inspecting the raw network traffic dumps for this final malicious
redirect request is sufficient to identify a vulnerable IdP. The remain-
ing data sources provide complementary signals that help verify
that the user authentication to the IdP and Client authorization for
data access are also performed correctly.

4.3 Experiment & Results
We performed our experiment using the above methodology, also
summarized in Figure 3. We implemented the OAuth 2.0 Player
using Node.js and puppeteer to drive the Chrome browser. We used
mitmproxy to intercept the traffic.

We seeded the experiment with a Client dataset of the Top 15K
sites of the Tranco list3 generated on 15 February 2022 [26]. Among
these, our setup crawl and heuristics detected 728 sites with an
authentication page supporting at least one IdP. Because these sites
used many niche IdPs, making a deep analysis of them infeasible,
we focused our investigation on the most popular picks. To that end,
we selected only those IdPs used by at least 3 Client sites, resulting
in 28 IdPs. We further filtered out the IdPs in this set that required
valid personal information to register, enforced geo-restrictions, or
mandated two-factor authentication. As a result, our data collection
phase started with 22 IdPs in scope. While running the OAuth 2.0
flow experiments, we ran into further issues with sites that used bot
management solutions or CAPTCHAs to block automated logins.
Ultimately, we ran 464 successful OAuth 2.0 flows between 378
Client sites and 16 IdPs.

3https://tranco-list.eu/list/KXNW.
5

ACSAC ’23, December 4–8, 2023, Austin, TX, USA Innocenti, et al.

OAuth 2.0 Player

facebook.com/LOGINimdb.com/LOGIN

Sign in
Username

Analysis

Results

Sites &

OAuth 2.0

Triggers

IdP

Credentials

Setup Data AnalysisData Collection

IdP

Detection

Login page

detection
Tranco

sites list

Network

Dump

Login

Results

Proxy

Logs

Screen

Captures

Path

Confusion

Payloads

��������IMDb

OAuth 2.0 Flow

Analysis

Figure 3: Experiment methodology for detecting IdPs vulnerable to path confusion attacks.

Analysis of the experimental data revealed that 6 out of the
16 IdPs we tested did not correctly validate redirect URI,
and were exposed to path confusion attacks. The vulnerable
IdPs were Atlassian, Facebook, GitHub, Microsoft, NAVER, and VK.
This experiment empirically confirms our hypothesis that the RFC-
prescribed redirect URI validation strategy is insufficient and
that path confusion attacks on OAuth 2.0 are practical. We answer
our research question (Q1) affirmatively.

5 BAD VALIDATION PART II:
PARAMETER POLLUTION

We now answer our next research question (Q2) (see Section 3.2)
by exercising IdPs with parameter pollution payloads.

5.1 OAuth 2.0 Parameter Pollution (OPP)
HTTP parameter pollution (HPP) is a well-known web applica-
tion exploitation technique where an attacker crafts a request that
includes multiple parameters with identical names, but different
values. The processing order for such parameters (or whether they
are processed at all) is implementation dependent. The attacker
can elicit unusual behavior or bypass security checks by targeting
applications made up of multiple components that process the same
query string inconsistently [2].

Building on previous work demonstrating parameter pollution
in OAuth 2.0 (i.e., [13, 28]), and combining both observations from
Section 3, that the RFC allows redirect URI values with differing
lengths to pass validation and that IdPs are required to keep query
strings intact, we set out to investigate whether HPP attacks apply
to OAuth 2.0 flows more generally. We call this rendition of the
attack OAuth 2.0 parameter pollution, or OPP.

OPP has one express goal: To influence an OAuth 2.0 flow so that,
at the end of the Authorization Process, the victim is redirected to
a Client callback endpoint with two distinct code parameters, one
being the legitimate value, and the other injected by the attacker.
We present the attack in Figure 4 and describe how it plays out
below.We emphasize that we will describe how this capability
enables an end-to-end attack in the following sections. Here,
our sole goal is to describe the technique and verify that IdPs
are indeed impacted.

The attacker first crafts a URL pointing to the target IdP’s au-
thorization endpoint, including all the necessary and valid query
string parameters response type = code, client ID, state, and
redirect URI. However, they then modify the included redirect
URI by appending it a query parameter code. The value of this
parameter may be an arbitrary string; or alternatively, the attacker
can obtain and use a valid code value by starting another OAuth 2.0
flow and prematurely stopping it after the Authorization Process.
In either case, the net effect is a malicious URL already containing a
code parameter appended to its redirect URI parameter, shown
in blue below. Note that the attacker encodes the "?" and "=" char-
acters in the appended query string, shown in red, to minimize the
chances of a parsing error on the IdP end.

https ://idp.example.com/oauth/authorize?

response_type=code&client_id=<valid ID >&

state=<value >&

redirect_uri=

https :// client.example.com/

oauth/callback %3Fcode%3D<value >

Once the attack URL is ready, the attacker tricks a victim into
visiting it via social engineering or injection techniques. (1) This
starts a normal OAuth 2.0 flow, taking the victim’s browser to the
IdP’s legitimate authorization page. (2) The victim logs into their
account, authorizing the Client to access their data. During this
step, the IdP performs validation on redirect URI as prescribed,
but there is no reason to flag the unexpected query parameter
code, as the prefix perfectly matches the registered redirect URI
value, therefore passing the validation successfully. (3) Finally, the
IdP takes the redirect URI that already includes the attacker
injected code, keeps it intact as mandated in RFC 6749 Section 3.1,
and appends to it a second code freshly generated for this flow.
(4) Ultimately, the victim lands on the Client callback endpoint
with two code parameters. If the Client implementation chooses to
process the attacker-injected code, the victim’s valid code remains
unused, ready to be leaked via another vulnerability for an account
takeover.

6

OAuth 2.0 Redirect URI Validation Falls Short, Literally ACSAC ’23, December 4–8, 2023, Austin, TX, USA

redirect_uri (code + code)

redirect_uri (code) redirect_uri (code)

redirect_uri (code + code) (code), redirect_uri (code)

Wrong redirect_uri
validation

Attack start
Client Attacker IdPVictim

(Web Browser)

redirect_uri (code)

redirect_uri ()
≠

Victim authentication2.1.

3.4.

 IdP status

Figure 4: Attack flow for OAuth 2.0 parameter pollution.

5.2 Experiment & Results
We tested the viability of OPP by creating a simple Client applica-
tion, registering it with IdPs, and participating in OAuth 2.0 with
them. We replicated the conceptual attack steps described above,
injecting duplicate code parameters into flows. We conducted this
experiment with the same set of 16 IdPs as determined in the previ-
ous path confusion experiments; we omit those redundant phases
of the methodology.

The results showed that 10 out of 16 IdPs were impacted by
OPP. They did not terminate the flow or strip away the superfluous
parameter, which resulted in our browser landing on the callback
endpoint with both code parameters intact. The impacted IdPs were
GitHub, LINE, LinkedIn, Microsoft, NAVER, OK, ORCID, Slack, VK,
and Yahoo. This experiment again confirms our hypothesis that
the RFC-prescribed redirect URI validation is inadequate and
validates the previous findings in literature. We answer our research
question (Q2) affirmatively.

6 IMPACT
So far, we have presented two abuse techniques targeting IdPs that
do not validate redirect URI correctly during the Authorization
Process. This is not due to arbitrary bugs or design decisions, but
they are rooted in the OAuth 2.0 specification; in other words, IdPs
that strictly follow the formal validation guidance may still be
vulnerable. The result is that the authorization code is delivered to
a maliciously modified callback endpoint.

However, the victim is not compromised yet. For a successful end-
to-end attack, two more conditions are necessary: (1) The attacker
must be able to gain possession of the victim’s code, and ultimately
(2) redeem it for an access token resulting in a complete account
takeover. In this section, we explain how these additional steps can
be achieved in practice, what our abuse techniques contribute to the
security concerns already covered in the OAuth 2.0 specification,
and how we significantly expand the attack surface of applications.
This addresses our research question (Q3) (see Section 3.2).

6.1 code Leakage
Exposure of sensitive OAuth 2.0 parameters to third/fourth-party
code included on a callback endpoint is a concern that the protocol
specification already recognizes. The RFC calls out this risk and
assigns the responsibility of protecting the Authorization Response
to the Client:

RFC 6749 Section 3.1.2.5 The Client SHOULD NOT in-
clude any third-party scripts (e.g., third-party analytics,
social plug-ins, ad networks) in the redirection endpoint
response. Instead, it SHOULD extract the credentials
from the URI and redirect the user-agent again to an-
other endpoint without exposing the credentials (in the
URI or elsewhere). If third-party scripts are included, the
Client MUST ensure that its own scripts(used to extract
and remove the credentials from the URI) will execute
first.

Even if a Client ignores this requirement and the code ends up
being leaked, attacks are not trivial. Foremost, the attacker cannot
influence the leak destination unless a very specific XSS, JavaScript
inclusion, or open redirect vulnerability is already present on the
precise callback page–a code leaked to an arbitrary legitimate third
party is of no value to the attacker. Next, even if the attacker could
gain access to the leaked code, they must then enter a tight race
condition with the legitimate OAuth 2.0 flow to use the code first–
the code is a short-lived, single-use token. As a result of these
limitations, code leakage attacks are often not considered a relevant
risk, and the research community has not focused on them.

Our attack techniques remove these limitations and make
code leakage viable.

In particular, path confusion and OPP eliminate the aforemen-
tioned race condition, as the victim’s code remains unused. Path
confusion redirects the user to an entirely different endpoint on the
Client, where the application logic does not expect an OAuth 2.0
flow, and therefore does not consume the code. OPP tricks the
Client into proceeding with the flow using an attacker-injected
code, leaving the victim’s original code intact.

Path confusion has another powerful property. Now that the
attacker can influence the callback endpoint, a data exfiltration vul-
nerability present on any path of the Client can be weaponized to
compromise OAuth 2.0 and escalate to a complete account takeover.
This greatly increases the attack surface of a web application, trans-
forming (even non-exploitable) common vulnerabilities into critical
security issues. For instance, an attacker can inspect a web applica-
tion to find any of the below issues, on any path, and redirect their
victim to that path to steal their code reliably:

• XSS, style, or HTML injection of any kind that allows
the attacker to extract query string parameters and trigger a
request to a domain they control, giving them direct access
to the code.

7

ACSAC ’23, December 4–8, 2023, Austin, TX, USA Innocenti, et al.

• Open redirect vulnerabilities, immediately re-routing the
Authorization Response to an attacker domain.

• Multi-tenant sites, where different entities can reside on
the same domain name under different paths, and the at-
tacker sign up as a legitimate tenant to hijack the Authoriza-
tion Response.

• Leaky third-party code inclusion, the original threat that
the OAuth 2.0 specification advice attempts to mitigate on
callback endpoints, now becoming a concern across the en-
tire Client site.

We present two real-life examples of these scenarios in more
detail later in this section.

6.2 redirect URI Validation in Redeem Process
Once the attacker obtains the victim’s code, they need to redeem it
for an access token, and this step poses a final challenge. Recall
from our overview of OAuth 2.0 in Section 2, Figure 1, Step (7)
that the Client includes another redirect URI parameter in the
Access Token Request. The protocol specification requires this value
to match the redirect URI that was previously supplied in the
Authorization Request:

RFC 6749 Section 4.1.3 The Client makes a request
to the token endpoint by sending the following pa-
rameters [...]
redirect_uri REQUIRED, if the "redirect_uri" param-
eter was included in the authorization request as de-
scribed in Section 4.1.1, and their values MUST be
identical.

This requirement implies that the attacker’s modifications to
the redirect URI in the Authorization Request must be correctly
reflected in the Access Token Request. This is problematic for the at-
tacker, because they do not have control over this second redirect
URI parameter: The Authorization Request is sent from the User-
Agent that the attacker operates, whereas the Access Token Request
is issued by the Client, protected from the attacker’s influence.

Once again, the quoted RFC section mandates an identical value
without concrete guidance on how this validation should be per-
formed. In light of this observation, we hypothesize that IdPs will
follow the same improper redirect URI validation prescribed in
RFC 6749 Section 3.1.2.3 (as also suggested in the OAuth 2.0 Secu-
rity Best Current Practice), or otherwise, either Clients or IdPs will
make arbitrary design decisions that may be hazardous.

Unfortunately, it is not feasible to explore how exactly IdPs
perform the check from an external vantage point, without visi-
bility into the IdPs’ implementation. Therefore, verifying this hy-
pothesis within a scientific framework is outside the scope of our
work. Instead, we present a number of experiments that empirically
demonstrate what IdPs under our lens perform the Redeem Process
validation incorrectly, enabling a complete attack.

Experiments. In the first experiment, we use our Client appli-
cation and perform a series of OAuth 2.0 flows against each IdP. We
launch the described path confusion attack in the Authorization
Request by modifying the redirect URI. However, we use the
original, unmodified redirect URI in the Access Token Request.
If the OAuth 2.0 completes successfully regardless of the mismatch
between the two redirect URI values, we conclude that the IdP

performs an incorrect validation action. We stress again that we
cannot experimentally determine what that incorrect validation
action is without observing IdP internals; this is necessarily a black
box test. The second experiment follows the same methodology,
but this time with an OPP attack introduced in the Authorization
Request.

In both experiments,we found the 2 IdPs GitHub andNAVER
to perform insufficient validation in the Redeem Process and
allow an end-to-end account takeover attack.

In order to understand what might be happening under the hood,
we explored the documentation for each service. GitHub references
the redirect URI parameter in the Redeem Process, but the pro-
vided definition (i.e., "The URL in your application where users are
sent after authorization.") is incomplete at best; this value must be
required to match the redirect URI used in the Authorization
Request. Moreover, the parameter is marked optional, even when a
redirect URI is provided in the Authorization Request [10]. With
further testing, we were indeed able to verify that entirely omitting
this value also results in a successful flow. NAVER’s documentation
and examples did not include a redirect URI in the Access Token
Request [21] at all. Likewise, performing a complete OAuth 2.0 with
NAVER was possible when our Client provided no redirect URI.
In either case, it was not clear whether the string matching strategy
was flawed when a redirect URI is provided by the Clients, or
whether the IdPs omitted validation on the provided values at all
times. Regardless, both IdPs were exploitable in practice.

Influencing the Access Token Request. We make a final
observation that depending on how real-life Clients construct the
Access Token Request, an attacker may be able to influence the
process, and trick the Client into re-creating an identical redirect
URI to the attack payload. As a result, both redirect URI values
would naturally match, in theory defeating all validation checks.
We present an example of how this might play out with a typical
Client implementation of the Access Token Request build process in
Figure 5, zooming into Steps (6) and (7) in our OAuth 2.0 overview
diagram previously shown in Figure 1.

On the left, we see a normal flow, where (1) the Client receives
a benign Authorization Response at the correct callback endpoint,
(2) parses the query string into three components code, state, and
everything else that comes after as a monolithic block to capture the
application-specific parameters, (3) performs the state check, (4)
and finally constructs the new redirect URI by appending to the
callback endpoint the previously parsed block of custom parameters.
This is the expected behavior, required by RFC 6749 Section 4.1.3, so
the query strings in the old and new redirect URI values match.
On the right, we see the outcome of the same build process, but for
an Authorization Response that was polluted with a superfluous
code as a result of an OPP attack. As the figure demonstrates,
the attacker-injected code is now treated as part of the custom
parameter block, and directly copied to the new redirect URI,
which becomes identical to the previous redirect URI that the
attacker manipulated to trigger the OPP. The subsequent redirect
URI validation in the IdP should find a perfect match.

Surprisingly, when we tested this scenario with the 10 IdPs vul-
nerable to OPP, only 6 (i.e., GitHub, LinkedIn, NAVER, OK, Slack,
and VK) completed the protocol. That is, the remaining 4 IdPs re-
fused to validate matching redirect URI values. This was contrary

8

OAuth 2.0 Redirect URI Validation Falls Short, Literally ACSAC ’23, December 4–8, 2023, Austin, TX, USA

idp_redeem?client_id=123&code=user_code&

redirect_uri=https://example.com/authorize%3F

subscribe%3Dyes%26continue

%3Dhttps://example.com/premium

U
rl
e
n
c
o
d
e

idp_redeem?client_id=123&code=victim_code&

redirect_uri=https://example.com/authorize%3F

code%3Dattacker_code%26subscribe%3Dyes

%26continue%3Dhttps://example.com/premium

https://example.com/authorize?code=victim_code&state=user_state&

code=attacker_code&subscribe=yes

&continue=https://example.com/premium

Client

State check

Access Token Request Build

6) Authorization Response

7) Access Token Request

U
rl
e
n
c
o
d
e

https://example.com/authorize?code=user_code&state=user_state&

subscribe=yes&continue=

https://example.com/premium

Client

State check

Access Token Request Build

6) Authorization Response

7) Access Token Request

Figure 5: Typical implementation of Access Token Request build process. On the left: The Client builds the Access Token
Request, correctly matching the application-specific query string parameters received in the request to the newly constructed
redirect URI. On the right: The same process during an OPP attack results in a redirect URI value that matches the attack
payload.

to our expectations; the two redirect URI values were identical,
and both the RFC-prescribed validation strategy and an exact string
comparison should have succeeded. This again demonstrates that
IdPs may be following arbitrary validation routines designed to fill
the gaps in the RFC, or maintaining a custom state about the ob-
served redirect URI values, as opposed to doing a straightforward
string comparison. Although that had the desirable effect of block-
ing the OPP attack here, non-standard validation is error-prone,
and such inconsistent behavior is a common cause of hazardous
interactions in systems-centric security.

6.3 Case Studies
As discussed, the real-life exploitability of insufficient redirect
URI validation vulnerabilities depends on both Client and IdP imple-
mentations. Due to the infeasibility of performing detailed testing
with each website in the wild, we present two real-life attacks as
case studies. We leave an exploration of the automated discovery
of end-to-end attacks for future work.

Weaponizing Open Redirects. An open redirect is a common
web application vulnerability that allows an attacker to influence
the URL to which a victim is redirected when they visit a vulnerable
site. Open redirect vulnerabilities that may be present on callback
endpoints are formally acknowledged as a threat to OAuth 2.0 in the
specification. However, using our novel path confusion technique
and the knowledge of IdPs that do not perform the Redeem Process
validation properly, we are now equipped to weaponize any open
redirect on a site to compromise OAuth 2.0.

Because open redirect vulnerabilities are so common, instead of
doing our own testing, we searched the Open Bug Bounty program
for sites from our dataset with known, but unresolved issues [23].
The issue we picked was reported in 2018, assessed as a very low
risk, and presumably not fixed as a result. However, because the site

integrates with NAVER as an IdP, the combination escalates this
low-risk vulnerability to a complete OAuth 2.0 account takeover.

We crafted the proof-of-concept attack below that takes the
link to the NAVER Authorization Server and appends a malicious
redirect URI that contains our path confusion payload. We redact
the site as this vulnerability remains exploitable as of this writing,
but our methodology is trivial to repeat.
https ://nid.naver.com/oauth2 .0/ authorize?

client_id=<REDACTED >&

response_type=code&

redirect_uri=https%3A%2F%2F<REDACTED >%2F

openapi %2 Fsocial %2 Flogin.php/

%252e%252e/%252e%252e/%252e%252e/

redirect.php%3 Ftarget %3 Dhttps %3a%2F%2F

<attacker -domain >%2F&

state=random -state

The attack then plays out as expected: (1) The attacker tricks
the victim into clicking on this link via social engineering. (2) The
victim lands on the legitimate NAVER login page and enters their
credentials. (3) NAVER redirects the victim back to <REDACTED>,
but to the page that contains the open redirect vulnerability due
to our path confusion payload. (4) The open redirect forwards the
request to an attacker-controlled domain, leaking the code. (5) With
access to the code, the attacker starts a new OAuth 2.0 flow, inter-
cepts it at the browser before sending the Authorization Response,
and injects into it the victim’s stolen code before forwarding it to
<REDACTED>. (6) <REDACTED> performs the rest of the Redeem
Process, and because NAVER does not implement correct validation
of the redirect URI, the protocol is successfully executed, giving
the attacker full control of the victim’s resources.

We presented one specific case here; however, attackers can
scrape bug bounty reports or perform their own testing to exploit
open redirects at scale by following the same simple methodology.

9

ACSAC ’23, December 4–8, 2023, Austin, TX, USA Innocenti, et al.

Table 1: Summary of findings.

IdP Path Confusion OPP Redeem Validation

Atlassian Vulnerable Not Vulnerable Correct
Dropbox Not Vulnerable Not Vulnerable Correct
Facebook Vulnerable Not Vulnerable Correct
GitHub Vulnerable Vulnerable Incorrect
Kakao Not Vulnerable Not Vulnerable Correct
LINE Not Vulnerable Vulnerable Correct

LinkedIn Not Vulnerable Vulnerable Correct
Microsoft Vulnerable Vulnerable Correct
NAVER Vulnerable Vulnerable Incorrect
OK Not Vulnerable Vulnerable Correct

ORCID Not Vulnerable Vulnerable Correct
Slack Not Vulnerable Vulnerable Correct
Twitter Not Vulnerable Not Vulnerable Correct
VK Vulnerable Vulnerable Correct

Yahoo Not Vulnerable Vulnerable Correct
Yandex Not Vulnerable Not Vulnerable Correct

Abusing Real-Time Bidding. As we previously pointed out,
RFC 6749 Section 3.1.2.5 states that Clients should never include
third-party scripts in OAuth 2.0 endpoints to prevent code leaks.
As part of an exploratory study, we measured the prevalence of
this unsafe practice. Specifically, we inspected the network flows
recorded in our previous experiments (see Section 4), identifying
such a leak to third-party domains in 46 measurements out of
464 (10%), involving 11 IdPs out of 16 (68%), and 30 sites (8%). We
identified 76 distinct domains as leak destinations, the largest
category being Ad networks with 30% of these domains.

Our investigation showed that this complex Ad network infras-
tructure can be abused as a viable OAuth 2.0 code leakage vector,
specifically by targeting the Real-Time Bidding (RTB) mechanism.
RTB allows advertisers to bid in real-time for Ad placement by pro-
viding them with information about the audience visiting a page.
Our data showed that this information includes the referral headers
of visitors. Therefore, when the callback endpoint contains such an
Ad service, advertisers receive bid requests that contain OAuth 2.0
parameters. Anybody can sign up as an advertiser and access code
parameters in real-time.

This attack vector is not critical for the reasons we have stated
earlier; the code is a one-time token that expires after use, and
the legitimate OAuth 2.0 flow would redeem it before a malicious
bidder can act. However, if an attacker utilizes OPP to inject an
invalid code and break the legitimate OAuth 2.0 flow, the victim’s
code that is leaked will be available for use without a race condition.
When combined with an IdP that does not correctly perform the
Redeem Process redirect URI validation, the situation escalates
to a complete account takeover. We verified that this attack is
practicable with real-life websites.

This RTB attack can also be combined with path confusion when
ad services are not present on the callback endpoint but elsewhere
on the site.

7 DISCUSSION AND CONCLUSION
Summary. In this paper, we have presented our observations on
the OAuth 2.0 redirect URI validation requirements and security
recommendations by referencing specific guidance from the pro-
tocol specification. We investigated the potential gaps in them in
light of the contemporary systems-centric web application attacks.

Our experiments prove that the current "best practice" is not
good enough, leaving IdPs, Clients, and Internet users exposed to
attacks. In particular, we have shown that path confusion and pa-
rameter pollution attacks are viable with popular IdPs, affirmatively
answering our research questions (Q1) and (Q2). We summarize the
full list of IdPs we experimented with and our findings in Table 1.

The vulnerabilities we discovered are not mere implementation
bugs, but they are rooted in the OAuth 2.0 specification where
language is not prescriptive enough, or otherwise where the re-
quirements miss threats like path confusion that have only recently
started to gain traction in security literature. As a result, IdPs that
systematically follow the relevant RFCs still run the risk of exposing
redirect URI validation vulnerabilities.

It is important to stress that not all of these vulnerabilities trans-
late to exploitable scenarios. OAuth 2.0 is a reasonably mature
protocol that has received much security attention, resulting in
adequate mitigating controls. Elsewhere, IdPs and Clients fill in the
gaps and may address the protocol’s weaknesses via their custom
design decisions. Nevertheless, we have shown that end-to-end
exploits affect real-life applications and have severe consequences,
addressing our research question (Q3).

Recommendations. The steady stream of systems-centric web
attacks like HTTP request smuggling and cache poisoning demon-
strate that, strictly prescribed input validation instructions are para-
mount for consistent behavior in protocols that involve complex in-
teractions. Thankfully, improving the OAuth 2.0 validation require-
ments is not an intractable effort. Devising a standard, narrowly
defined string comparison strategy, and better input validation on
sensitive parameters would immediately block the techniques we
have presented, with minor implementation barriers.

Consequently, we conclude our paper with simple yet effective
recommendations, addressing our final research question (Q4). All
recommendations apply during both the Authorization Process
and Redeem Process validation, and in fact must be implemented
consistently in both checks to avoid further hazardous processing
discrepancies.

redirect URI validation must be performed via a strict string
equality check, and this requirement must be clearly stated in formal
specifications. That is, the compared URIs must be of equal size, and
must be made up of an identical byte sequence. This ensures that
validation checks cover all components of the URI.

OAuth 2.0 parameters (e.g, code, state) must be reserved names.
Servers must check redirect URI for these reserved names and fail
the validation if they are present. Observing these parameters in
redirect URI is either an attack indication, or a Client namespac-
ing issue which could lead to hazardous interactions. Performing
the check on the server shifts Client-side implementation responsi-
bilities to the IdP, allowing consistent security guarantees.

Servers must NOT perform input sanitization on redirect URI.
Any URI transformation or encoding/decoding operation on un-
trusted input could be weaponized by an attacker to elicit parsing
discrepancies between a Client and the IdP, bypassing validations.
Examples include the path confusion payloads we presented here
and the security issues already documented in the specification,
such as the abuse of URI fragments. redirect URI must always be
validated, never sanitized.

10

OAuth 2.0 Redirect URI Validation Falls Short, Literally ACSAC ’23, December 4–8, 2023, Austin, TX, USA

One implementation hurdle we foresee with IdPs enforcing these
recommendations is maintaining compatibility with the vast num-
ber of existing Clients with unusual or buggy protocol implementa-
tions. For instance, a Client may be reordering the redirect URI
query string parameters between the Authorization Process and
Redeem Process, or they may be fronting OAuth 2.0 endpoints
with proxies that perform request transformations. This is a valid
concern; however, it is also one that IdPs must address via opt-in
non-secure configuration options that allow permissive validation
checks for Clients that desire it. The OAuth 2.0 specification must
provide prescriptive and correct guidance.

Ethical Considerations.All experiments described in this work
were designed and conducted ethically, posing no risk to the tested
Client sites, IdPs, or their users.

The data we used to seed the experiments and collected through
our experiments was obtained using publicly available sources.

Following the common Internetmeasurement practice, our crawlers
were limited to send below 15 requests per minute. We expect this
added traffic load to be well below the threshold for performance
degradation, an availability issue, or any other security anomaly
that could get flagged by the tested Clients or IdPs, causing them
undue effort to investigate.

We designed our testing methodology and proof-of-concept at-
tacks to have no negative effects on the Clients, IdPs, or their users,
persistent or otherwise. We used our own Client application and
IdP accounts in all tests, demonstrating the attacks on our resources.
We did not otherwise disrupt the everyday activities of the involved
parties. Since we could not influence the OAuth 2.0 flows of Internet
users, there was no possibility of inadvertent damage.

We notified all IdPs of our findings promptly.We notified the IdPs
that were found to be impacted by improper validation throughout
our experiments as we discovered vulnerabilities. When applicable
to their circumstances, we provided them with detailed reports of
our findings and proof-of-concept attack videos. We notified the
remaining, non-vulnerable IdPs at the conclusion of our research
by sending them a copy of this paper. All in all, we notified all
16 IdPs we tested, allowing them more than 90 days to mitigate
their vulnerabilities. At the time of this writing, only Microsoft has
confirmed that they mitigated the issue. The remaining IdPs ac-
knowledged receipt of the notification but did not share mitigation
plans or report progress.

We coordinated our findings with the OAuth Working Group
(OWG) from the early stages of this work. This has resulted in an
update to the OAuth 2.0 Security Best Current Practice, Section
4.1.3, clarifying the requirement for an exact string match during
redirect URI validation [16].

ACKNOWLEDGMENTS
We thank Daniel Fett, Rifaat Shekh-Yusef and Hannes Tschofenig
from the OAuthWorking Group for their guidance and coordination
with us throughout this work.

We also thank Avinash Sudhodanan for his helpful insights.
This work was partially supported by the EU Horizon project

DUCA (HORIZON-MSCA-2021-SE-01 programme under GA 101086308)
and by NSF grants 2329540, 2219921, and 2127200.

REFERENCES
[1] Sajjad Arshad, Seyed Ali Mirheidari, Tobias Lauinger, Bruno Crispo, Engin Kirda,

and William Robertson. 2018. Large-Scale Analysis of Style Injection by Relative
Path Overwrite. In International World Wide Web Conference.

[2] Marco Balduzzi, Carmen Torrano Gimenez, Davide Balzarotti, and Engin Kirda.
2011. Automated Discovery of Parameter Pollution Vulnerabilities in Web Appli-
cations. In Network and Distributed System Security Symposium.

[3] Adam Bannister. 2023. OAuth ‘masterclass’ crowned top web hacking technique
of 2022. PortSwigger–The Daily Swig. https://portswigger.net/daily-swig/oauth-
masterclass-crowned-top-web-hacking-technique-of-2022.

[4] Michele Benolli, Seyed Ali Mirheidari, Elham Arshad, and Bruno Crispo. 2021.
The Full Gamut of an Attack: An Empirical Analysis of OAuth CSRF in the
Wild. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment.

[5] Stefano Calzavara, Riccardo Focardi, Matteo Maffei, Clara Schneidewind, Marco
Squarcina, and Mauro Tempesta. 2018. WPSE: Fortifying Web Protocols via
Browser-Side Security Monitoring. In USENIX Security Symposium.

[6] Suresh Chari, Charanjit Jutla, and Arnab Roy. 2011. Universally Composable
Security Analysis of OAuth v2.0. Cryptology ePrint Archive (2011).

[7] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2016. A Comprehensive Formal
Security Analysis of OAuth 2.0. In ACM Conference on Computer and Communi-
cations Security.

[8] Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis. 2022. Towards
Automated Auditing for Account and Session Management Flaws in Single Sign-
On Deployments. In IEEE Symposium on Security and Privacy.

[9] Mohammad Ghasemisharif, Amrutha Ramesh, Stephen Checkoway, Chris Kanich,
and Jason Polakis. 2018. O Single Sign-Off, Where Art Thou? An Empirical
Analysis of Single Sign-On Account Hijacking and Session Management on the
Web. In USENIX Security Symposium.

[10] GitHub Docs. 2023. Authorizing OAuth Apps. https://docs.github.com/en/apps/
oauth-apps/building-oauth-apps/authorizing-oauth-apps#web-application-
flow.

[11] Dick Hardt. 2005. RFC 3986–Uniform Resource Identifier (URI): Generic Syntax.
https://datatracker.ietf .org/doc/rfc3986/.

[12] Dick Hardt. 2012. RFC 6749–The OAuth 2.0 Authorization Framework. https:
//datatracker.ietf .org/doc/rfc6749/.

[13] Lauritz Holtmann. 2021. Insufficient Redirect URI validation: The risk of allowing
to dynamically add arbitrary query parameters and fragments to the redirect_uri.
(Web-)Insecurity Blog. https://security.lauritz-holtmann.de/post/sso-security-
redirect-uri-ii/.

[14] David Krispin and Nir Swartz. 2021. Microsoft and GitHub OAuth
Implementation Vulnerabilities Lead to Redirection Attacks. https:
//www.proofpoint.com/us/blog/cloud-security/microsoft-and-github-oauth-
implementation-vulnerabilities-lead-redirection.

[15] Wanpeng Li, Chris J. Mitchell, and Thomas Chen. 2019. OAuthGuard: Protecting
User Security and Privacywith OAuth 2.0 andOpenIDConnect. InACMWorkshop
on Security Standardisation Research.

[16] T. Lodderstedt, J. Bradley, A. Labunets, and D. Fett. 2023. OAuth 2.0 Security
Best Current Practice. https://datatracker.ietf .org/doc/html/draft-ietf-oauth-
security-topics.

[17] T. Lodderstedt, M. McGloin, and P. Hunt. 2013. RFC 6819–OAuth 2.0 Threat
Model and Security Considerations. https://datatracker.ietf .org/doc/rfc6819/.

[18] Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu, Bruno Crispo, Engin Kirda,
and William Robertson. 2020. Cached and Confused: Web Cache Deception in
the Wild. In USENIX Security Symposium.

[19] Seyed Ali Mirheidari, Matteo Golinelli, Kaan Onarlioglu, Engin Kirda, and Bruno
Crispo. 2022. Web Cache Deception Escalates!. In USENIX Security Symposium.

[20] Srivathsan G. Morkonda, Sonia Chiasson, and Paul C. van Oorschot. 2021. Empir-
ical Analysis and Privacy Implications in OAuth-Based Single Sign-On Systems.
In Workshop on Privacy in the Electronic Society.

[21] NAVER Developers. 2023. API Specification. https://developers.naver.com/docs/
login/api/api.md.

[22] OAuth 2.0. 2014. OAuth Security Advisory: 2014.1 "Covert Redirect". https:
//oauth.net/advisories/2014-1-covert-redirect/.

[23] Open Bug Bounty. [n. d.]. Free Bug Bounty Program and Coordinated Vulnera-
bility Disclosure. https://www.openbugbounty.org.

[24] Suhas Pai, Yash Sharma, Sunil Kumar, RadhikaM. Pai, and Sanjay Singh. 2011. For-
mal Verification of OAuth 2.0 Using Alloy Framework. In International Conference
on Communication Systems and Network Technologies.

[25] Pieter Philippaerts, Davy Preuveneers, and Wouter Joosen. 2022. OAuch: Explor-
ing Security Compliance in the OAuth 2.0 Ecosystem. In International Symposium
on Research in Attacks, Intrusions and Defenses.

[26] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczynski, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Network and Distributed System
Security Symposium.

[27] Frans Rosén. 2022. Account hijacking using "dirty dancing" in sign-in OAuth-
flows. https://labs.detectify.com/2022/07/06/account-hijacking-using-dirty-
dancing-in-sign-in-oauth-flows/.11

https://portswigger.net/daily-swig/oauth-masterclass-crowned-top-web-hacking-technique-of-2022
https://portswigger.net/daily-swig/oauth-masterclass-crowned-top-web-hacking-technique-of-2022
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/authorizing-oauth-apps#web-application-flow
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/authorizing-oauth-apps#web-application-flow
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/authorizing-oauth-apps#web-application-flow
https://datatracker.ietf.org/doc/rfc3986/
https://datatracker.ietf.org/doc/rfc6749/
https://datatracker.ietf.org/doc/rfc6749/
https://security.lauritz-holtmann.de/post/sso-security-redirect-uri-ii/
https://security.lauritz-holtmann.de/post/sso-security-redirect-uri-ii/
https://www.proofpoint.com/us/blog/cloud-security/microsoft-and-github-oauth-implementation-vulnerabilities-lead-redirection
https://www.proofpoint.com/us/blog/cloud-security/microsoft-and-github-oauth-implementation-vulnerabilities-lead-redirection
https://www.proofpoint.com/us/blog/cloud-security/microsoft-and-github-oauth-implementation-vulnerabilities-lead-redirection
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://datatracker.ietf.org/doc/rfc6819/
https://developers.naver.com/docs/login/api/api.md
https://developers.naver.com/docs/login/api/api.md
https://oauth.net/advisories/2014-1-covert-redirect/
https://oauth.net/advisories/2014-1-covert-redirect/
https://www.openbugbounty.org
https://labs.detectify.com/2022/07/06/account-hijacking-using-dirty-dancing-in-sign-in-oauth-flows/
https://labs.detectify.com/2022/07/06/account-hijacking-using-dirty-dancing-in-sign-in-oauth-flows/

ACSAC ’23, December 4–8, 2023, Austin, TX, USA Innocenti, et al.

[28] Youssef Sammouda. 2021. More secure Facebook Canvas: Tale of $126k worth of
bugs that lead to Facebook Account Takeovers. https://ysamm.com/?p=708.

[29] Ethan Shernan, Henry Carter, Dave Tian, Patrick Traynor, and Kevin Butler. 2015.
More Guidelines Than Rules: CSRF Vulnerabilities from Noncompliant OAuth
2.0 Implementations. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment.

[30] Avinash Sudhodanan and Andrew Paverd. 2022. Pre-hijacked accounts: An
Empirical Study of Security Failures in User Account Creation on the Web. In
USENIX Security Symposium.

[31] San-Tsai Sun and Konstantin Beznosov. 2012. The Devil is in the (Implementation)
Details: An Empirical Analysis of OAuth SSO Systems. In ACM Conference on

Computer and Communications Security.
[32] Rui Wang, Yuchen Zhou, Shuo Chen, Shaz Qadeer, David Evans, and Yuri Gure-

vich. 2013. Explicating SDKs: Uncovering Assumptions Underlying Secure Au-
thentication and Authorization. In USENIX Security Symposium.

[33] Xianbo Wang, Wing Cheong Lau, Shangcheng Shi, and Ronghai Yang. 2019.
Make Redirection Evil Again - URL Parser Issues in OAuth. Black Hat
Asia. https://www.blackhat.com/asia-19/briefings/schedule/#make-redirection-
evil-again---url-parser-issues-in-oauth-13704.

[34] Yuchen Zhou and David Evans. 2014. SSOScan: Automated Testing of Web
Applications for Single Sign-On Vulnerabilities. In USENIX Security Symposium.

12

https://ysamm.com/?p=708
https://www.blackhat.com/asia-19/briefings/schedule/#make-redirection-evil-again---url-parser-issues-in-oauth-13704
https://www.blackhat.com/asia-19/briefings/schedule/#make-redirection-evil-again---url-parser-issues-in-oauth-13704

	Abstract
	1 Introduction
	2 Background
	2.1 OAuth 2.0
	2.2 Related Work

	3 Research Statement
	3.1 Motivation
	3.2 Research Goals
	3.3 Threat Model

	4 Bad Validation Part I: Path Confusion
	4.1 Path Confusion Primer
	4.2 Methodology
	4.3 Experiment & Results

	5 Bad Validation Part II: Parameter Pollution
	5.1 OAuth 2.0 Parameter Pollution (OPP)
	5.2 Experiment & Results

	6 Impact
	6.1 code Leakage
	6.2 redirect URI Validation in Redeem Process
	6.3 Case Studies

	7 Discussion and Conclusion
	References

